$A$-compactifications and $A$-weight of Alexandroff spaces
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 839-858.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The paper is devoted to the study of the ordered set $A \mathcal{K}(X, \alpha)$ of all, up to equivalence, $A$-compactifications of an Alexandroff space $(X, \alpha)$. The notion of $A$-weight (denoted by $aw(X, \alpha)$) of an Alexandroff space $(X, \alpha)$ is introduced and investigated. Using results in ([7]) and ([5]), lattice properties of $A \mathcal{K}(X, \alpha)$ and $A \mathcal{K_{\alpha w}}(X, \alpha)$ are studied, where $A \mathcal{K_{\alpha w}}(X, \alpha)$ is the set of all, up to equivalence, $A$-compactifications $Y$ of $(X, \alpha)$ for which $w(Y)= a w(X, \alpha)$. A characterization of the families of bounded functions generating an $A$-compactification of $(X, \alpha)$ is obtained. The notion of $A$-determining family of functions, analogous to the one of determining family given in ([3]), is introduced and relations with the original notion are investigated. A characterization of the families of functions which $A$-determine a given $A$-compactification is found. The cardinal invariant $a\delta(Y, t)$, corresponding to the cardinal invariant $\delta(Y, t)$ defined in ([3]), is introduced and studied.
Questo lavoro riguarda l'insieme ordinato $A \mathcal{K}(X, \alpha)$ delle $A$-compattificazioni di uno spazio di Alexandroff $(X, \alpha)$. Si definisce e si studia l'«$A$-peso» $aw(X, \alpha)$ dello spazio $(X, \alpha)$ e, sulla base di risultati in [7], [5], si presentano proprietà reticolari di $A \mathcal{K}(X, \alpha)$ e di $A \mathcal{K_{\alpha w}}(X, \alpha)$, l'insieme delle $A$-compattificazioni $(Y, t)$ di $(X, \alpha)$ tali che $w(Y)= a w(X, \alpha)$. Si caratterizzano le famiglie di funzioni continue limitate che generano una $A$-compattificazione di $(X, \alpha)$. In analogia con definizioni e risultati in [3], si introducono e si studiano la nozione di famiglia di funzioni che «$A$-determina» una $A$-compattificazione $(Y, t)$ e l'invariante cardinale $a\delta(Y, t)$ (minima cardinalità di una famiglia che $A$-determina $(Y, t)$).
@article{BUMI_2002_8_5B_3_a17,
     author = {Caterino, A. and Dimov, G. and Vipera, M. C.},
     title = {$A$-compactifications and $A$-weight of {Alexandroff} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {839--858},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1169.54349},
     mrnumber = {4078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a17/}
}
TY  - JOUR
AU  - Caterino, A.
AU  - Dimov, G.
AU  - Vipera, M. C.
TI  - $A$-compactifications and $A$-weight of Alexandroff spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 839
EP  - 858
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a17/
LA  - en
ID  - BUMI_2002_8_5B_3_a17
ER  - 
%0 Journal Article
%A Caterino, A.
%A Dimov, G.
%A Vipera, M. C.
%T $A$-compactifications and $A$-weight of Alexandroff spaces
%J Bollettino della Unione matematica italiana
%D 2002
%P 839-858
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a17/
%G en
%F BUMI_2002_8_5B_3_a17
Caterino, A.; Dimov, G.; Vipera, M. C. $A$-compactifications and $A$-weight of Alexandroff spaces. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 839-858. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a17/

[1] A. D. Alexandroff, Additive set functions in abstract spaces, Mat. Sbornik, 50 (1940), 307-348. | Jbk 66.0218.01 | MR

[2] R. A. Alo-H. L. Shapiro, Normal topological spaces, Cambridge University Press, 1974. | MR | Zbl

[3] B. J. Ball-S. Yokura, Compactifications determined by subsets of $C^{*}(X)$, Top. Appl., 13 (1982), 1-13. | MR | Zbl

[4] R. L. Blair-A. W. Hager, Extensions of zero sets and of real valued functions, Math. Zeit., 136 (1974), 41-52. | MR | Zbl

[5] A. Caterino-M. C. Vipera, Weight of a Compactification and Generating Sets of Functions, Rend. Sem. Mat. Univ. Padova, 79 (1988), 37-47. | fulltext mini-dml | MR | Zbl

[6] R. Chandler, Hausdorff Compactifications, Marcel Dekker, New York, 1976. | MR | Zbl

[7] A. Chigogidze, On Bicompact Extensions of Tychonoff Spaces, Mh. Math., 88 (1979), 211-218. | MR | Zbl

[8] G. Dimov-G. Tironi, Compactifications, $A$-compactifications and Proximities, Annali Mat. Pura ed Appl., IV-169 (1995), 88-108. | MR | Zbl

[9] R. Engelking, General Topology, Heldermann, Berlin, 1989. | MR | Zbl

[10] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math., 86 (1964), 602-607. | MR | Zbl

[11] L. Gillman-M. Jerison, Rings of continuous functions, Van Nostrand, 1960. | MR | Zbl

[12] H. Gordon, Rings of functions determined by zero-sets, Pacific J. Math., 36 (1971), 133-187. | fulltext mini-dml | MR | Zbl

[13] A. W. Hager, On inverse-closed subalgebras of $C(X)$, Proc. London Math. Soc., 19 (1969), 233-257. | MR | Zbl

[14] A. W. Hager, Cozero fields, Conferenze Seminario Matem. Univ. Bari, 75 (1980). | MR | Zbl

[15] A. W. Hager-D. G. Johnson, A note on certain subalgebras of $C(X)$, Canad. J. Math., 20 (1968), 389-393. | MR | Zbl

[16] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math., 68 (1958), 96-125. | MR | Zbl

[17] T. Jech, Set Theory, Academic Press, New York, San Francisco, London, 1978. | MR | Zbl

[18] A. K. Steiner-E. F. Steiner, Wallman and $Z$-compactifications, Duke Math. J., 35 (1968), 269-275. | fulltext mini-dml | MR | Zbl

[19] A. K. Steiner-E. F. Steiner, Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc., 148 (1970), 589-601. | MR | Zbl

[20] E. F. Steiner, Normal families and completely regular spaces, Duke Math. J., 33 (1966), 743-745. | fulltext mini-dml | MR | Zbl