On a subset with nilpotent values in a prime ring with derivation
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 833-838.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $R$ be a prime ring, with no non-zero nil right ideal, $d$ a non-zero drivation of $R$, $I$ a non-zero two-sided ideal of $R$. If, for any $x$, $y \in I$, there exists $n= n(x, y)\geq 1$ such that $( d ([x, y]) - [x, y] )^{n}=0$, then $R$ is commutative. As a consequence we extend the result to Lie ideals.
Siano $R$ un anello primo, privo di nil ideali destri, $d$ una derivazione non nulla di $R$, $I$ un ideale bilatero non nullo di $R$. Se, per ogni $x$, $y \in I$, esiste $n= n(x, y)\geq 1$ tale che $( d ([x, y]) - [x, y] )^{n}=0$ , allora $R$ é commutativo. Come conseguenza si ottiene una estensione di tale risultato per ideali di Lie di $R$.
@article{BUMI_2002_8_5B_3_a16,
     author = {De Filippis, Vincenzo},
     title = {On a subset with nilpotent values in a prime ring with derivation},
     journal = {Bollettino della Unione matematica italiana},
     pages = {833--838},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1119.16035},
     mrnumber = {1205483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a16/}
}
TY  - JOUR
AU  - De Filippis, Vincenzo
TI  - On a subset with nilpotent values in a prime ring with derivation
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 833
EP  - 838
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a16/
LA  - en
ID  - BUMI_2002_8_5B_3_a16
ER  - 
%0 Journal Article
%A De Filippis, Vincenzo
%T On a subset with nilpotent values in a prime ring with derivation
%J Bollettino della Unione matematica italiana
%D 2002
%P 833-838
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a16/
%G en
%F BUMI_2002_8_5B_3_a16
De Filippis, Vincenzo. On a subset with nilpotent values in a prime ring with derivation. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 833-838. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a16/

[1] M. Bresar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), 979-983. | MR | Zbl

[2] L. Carini-A. Giambruno, Lie ideals and nil derivations, Boll. UMI, 6 (1985), 497-503. | MR | Zbl

[3] V. De Filippis, Automorphisms and derivations in prime rings, Rendiconti di Mat. Roma, serie VII vol. 19 (1999), 393-404. | MR | Zbl

[4] O. M. Di Vincenzo, On the $n$-th centralizers of a Lie ideal, Boll. UMI, 7, 3-A (1989), 77-85. | MR | Zbl

[5] B. Felzenszwalb-C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra, 83 (1983), 520-530. | MR | Zbl

[6] I. N. Herstein, Center-like elements in prime rings, J. Algebra, 60 (1979), 567-574. | MR | Zbl

[7] I. N. Herstein, Topics in Ring theory, University of Chicago Press, Chicago 1969. | MR | Zbl

[8] M. Hongan, A note on semiprime rings, Int. J. Math. Math. Sci., 20, No. 2 (1997), 413-415. | MR | Zbl

[9] C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc., 108, No. 1 (1990), 31-37. | MR | Zbl

[10] C. Lanski-S. Montgomery, Lie structure of prime rings of characteristic $2$, Pacific J. Math., 42, No. 1 (1972), 117-135. | fulltext mini-dml | MR | Zbl

[11] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, vol. 20, No. 1 (1992), 27-38. | MR | Zbl

[12] T. L. Wong, Derivations with power-central values on multilinear polynomials, Algebra Colloquium, 3:4 (1996), 369-378. | MR | Zbl