Commutative monoids with zero-divisors
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 773-788.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We describe algorithms for computing the nilradical and the zero-divisors of a finitely generated commutative $\emptyset$-monoid. These algorithms will be used for deciding if a given ideal of a finitely generated commutative $\emptyset$-monoid is prime, radical or primary.
Vengono descritti alcuni algoritmi per il calcolo del nilradicale e dei divisori dello zero di uno $\emptyset$-monoide commutativo fintamente generato. Tali algoritmi vengono utilizzati per decidere se un ideale assegnato di uno $\emptyset$-monoide commutativo fintamente generato è primo, radicale o primario.
@article{BUMI_2002_8_5B_3_a12,
     author = {Rosales, J. C.},
     title = {Commutative monoids with zero-divisors},
     journal = {Bollettino della Unione matematica italiana},
     pages = {773--788},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1147.20316},
     mrnumber = {760214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a12/}
}
TY  - JOUR
AU  - Rosales, J. C.
TI  - Commutative monoids with zero-divisors
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 773
EP  - 788
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a12/
LA  - en
ID  - BUMI_2002_8_5B_3_a12
ER  - 
%0 Journal Article
%A Rosales, J. C.
%T Commutative monoids with zero-divisors
%J Bollettino della Unione matematica italiana
%D 2002
%P 773-788
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a12/
%G en
%F BUMI_2002_8_5B_3_a12
Rosales, J. C. Commutative monoids with zero-divisors. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 773-788. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a12/

[1] D. D. Anderson-E. W. Johnson, Ideal Theory in commutative semigroups, Semigroup Forum, 30 (1984), 127-158. | MR | Zbl

[2] I. Arnold, Ideale in kommutative Halbgruppen, Mat. Sb., 35 (1929), 401-408. | Jbk 55.0681.03

[3] S. T. Chapman-U. Krause-E. Oeljeklaus, Monoids determined by a homogeneus linear Diophantine equation and the half factorial property, to appear in J. Pure Appl. Algebra. | MR | Zbl

[4] A. H. Clifford, Arithmetic and ideal theory of commutative semigroups, Ann. of Math., 39 (1938), 594-610. | MR | Zbl

[5] A. H. Clifford-G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc., Providence, 1961. | MR | Zbl

[6] A. Geroldinger, On the structure and arithmetic of finitely primary monoids, Czech. Math. J., 46 (1996), 677-695. | MR | Zbl

[7] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972. | MR | Zbl

[8] R. Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics, 1984. | MR | Zbl

[9] F. Halter-Koch, Ideal systems. An introduction to multiplicative ideal theory, Marcel Dekker Inc., 1998. | MR | Zbl

[10] M. D. Larsen-P. J. Mccarthy, Multiplicative theory of ideals, Academic Press, New York and London, 1971. | MR | Zbl

[11] G. Lettl, Subsemigroups of finitely generated groups with divisor-theory, Monatsh. Math., 106 (1988), 205-210. | MR | Zbl

[12] L. Rédei, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. | MR | Zbl

[13] J. C. Rosales, Function minimum associated to a congruence on integral $n$-tuple space, Semigroup Forum, 51 (1995), 87-95. | MR | Zbl

[14] J. C. Rosales-P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publishers, New York, 1999. | MR | Zbl

[15] T. Tamura-N. Kimura, On decompositions of a commutative semigroup, Kodai Math. Sem. Rep., 1954, 109-112. | fulltext mini-dml | MR | Zbl

[16] P. A. Grillet, Semigroups. An introduction to the structure theory, Dekker, 1995. | MR | Zbl