Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_3_a0, author = {Peluso, R. I. and Piazza, G.}, title = {A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems}, journal = {Bollettino della Unione matematica italiana}, pages = {561--584}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {3}, year = {2002}, zbl = {1098.65037}, mrnumber = {1057146}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/} }
TY - JOUR AU - Peluso, R. I. AU - Piazza, G. TI - A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems JO - Bollettino della Unione matematica italiana PY - 2002 SP - 561 EP - 584 VL - 5B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/ LA - en ID - BUMI_2002_8_5B_3_a0 ER -
%0 Journal Article %A Peluso, R. I. %A Piazza, G. %T A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems %J Bollettino della Unione matematica italiana %D 2002 %P 561-584 %V 5B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/ %G en %F BUMI_2002_8_5B_3_a0
Peluso, R. I.; Piazza, G. A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 561-584. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/
[1] Accurate singular values of bidiagonal matrix, SIAM J. Sci. Stat. Comp., 11 (1990), 873-912. | MR | Zbl
- ,[2] Accurate singular values and differential qd algorithm, Numer. Math., 67 (1994), 191-229. | MR | Zbl
- ,[3] Matrix Computations, John Hopkins University Press, Baltimore 1989. | MR | Zbl
- ,[4] Topics in Matrix Analysis, Cambridge University Press, 1991. | MR | Zbl
- ,[5] The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, 1980. | MR | Zbl
,[6] Introduction to Numerical Analysis, Vol. I, Springer Verlag 1972. | Zbl
,[7] The Algebraic Eigenvalue Problem, Oxford University Press, Oxford 1965. | MR | Zbl
,