A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 561-584

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we consider the eigenvalue problem for positive definite symmetric matrices. Convergence properties for the zero shift $QR$ method and the shift $LR$ Cholesky method both in restoring and in non restoring version are deduced from the convergence properties of triangular matrices sequences. For general matrices we obtain some results on the convergence speed of the Cholesky method as a function of the chosen shift. These results follow from the absolute convergence of numerical series associated to matrices sequences. Concerning this theory we derive also convergence properties of the $QR$ method for the computation of the eigenvalues of normal matrices and of the $QR$ method for the computation of the singular values of complex matrices. For each method, together with the sequences of associated matrices, we consider a convergent sequence of diagonal matrices. Convergence properties of the methods follow since the matrices series defined by the differences of the terms of the two sequences are absolutely convergent.
@article{BUMI_2002_8_5B_3_a0,
     author = {Peluso, R. I. and Piazza, G.},
     title = {A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems},
     journal = {Bollettino della Unione matematica italiana},
     pages = {561--584},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {3},
     year = {2002},
     zbl = {1098.65037},
     mrnumber = {MR1934368},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/}
}
TY  - JOUR
AU  - Peluso, R. I.
AU  - Piazza, G.
TI  - A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 561
EP  - 584
VL  - 5B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/
LA  - en
ID  - BUMI_2002_8_5B_3_a0
ER  - 
%0 Journal Article
%A Peluso, R. I.
%A Piazza, G.
%T A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems
%J Bollettino della Unione matematica italiana
%D 2002
%P 561-584
%V 5B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/
%G en
%F BUMI_2002_8_5B_3_a0
Peluso, R. I.; Piazza, G. A unified convergence theory for $LR$ and $QR$ algorithms applied to symmetric eigenvalue problems. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 3, pp. 561-584. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_3_a0/