Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_2_a2, author = {\'Cwiszewski, Aleksander and Kryszewski, Wojciech}, title = {Approximate smoothings of locally {Lipschitz} functionals}, journal = {Bollettino della Unione matematica italiana}, pages = {289--320}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {2}, year = {2002}, zbl = {1177.49028}, mrnumber = {1217485}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a2/} }
TY - JOUR AU - Ćwiszewski, Aleksander AU - Kryszewski, Wojciech TI - Approximate smoothings of locally Lipschitz functionals JO - Bollettino della Unione matematica italiana PY - 2002 SP - 289 EP - 320 VL - 5B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a2/ LA - en ID - BUMI_2002_8_5B_2_a2 ER -
%0 Journal Article %A Ćwiszewski, Aleksander %A Kryszewski, Wojciech %T Approximate smoothings of locally Lipschitz functionals %J Bollettino della Unione matematica italiana %D 2002 %P 289-320 %V 5B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a2/ %G en %F BUMI_2002_8_5B_2_a2
Ćwiszewski, Aleksander; Kryszewski, Wojciech. Approximate smoothings of locally Lipschitz functionals. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 289-320. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a2/
[1] Optima and equilibria, Springer-Verlag, Berlin, Heidelberg 1993. | MR | Zbl
,[2] Applied Nonlinear Analysis, Wiley, New York 1986. | MR | Zbl
- ,[3] Set-valued Analysis, Birkhäuser, Boston 1991. | MR | Zbl
- ,[4] On the solution sets of differential inclusions and the periodic problem, Set-valued an 9, no. 3 (2001), 289-313. | MR | Zbl
- ,[5] Approximation and regularization of arbitrary sets in finite dimension, Set Valued Anal., 2 (1994), 95-115. | MR | Zbl
,[6] Fixed point theorem and Morse's lemma for Lipschitzian functions, J. Math. Anal. Appl., 146 (1990), 318-322. | MR | Zbl
- ,[7] Multifunctional and functional analytic techniques in nonsmooth analysis, in Nonlinear Analysis, Differential Equations and Control (F. H. Clarke and R. J. Stern, eds.), Kluwer Acad. Publ. (1999), 61-157. | MR | Zbl
- ,[8] Approximation of set-valued functions and fixed point theorems, Ann. Mat. Pura Appl., 82 (1969), 17-24. | MR | Zbl
,[9] Optimization and Nonsmooth Analysis, Wiley, New York 1983. | MR | Zbl
,[10] Complements, approximations, smoothings and invariance properties, J. Convex Anal., 4 (1997), 189-219. | MR | Zbl
- - ,[11] Représentations lisses de sous-ensemble épi-lipschitziens de $\mathbb{R}^n$, C. R. Acad. Paris Sèr. I, 325 (1997), 475-480. | MR | Zbl
- ,[12] Smooth normal approximations of epi-Lipschitzian subsets of $\mathbb{R}^N$, to appear in SIAM J. Control Opt. | MR | Zbl
- ,[13] Equilibria of Set-Valued Maps: a variational approach, Nonlinear Anal., 48 (2002), 707-746. | MR | Zbl
- ,[14] Partial differential equations with discontinuous nonlinearities approximation approach, in preparation.
- ,[15] Functional analysis, Theory and applications, Holt, Rinehart and Winston, New York 1965. | MR | Zbl
,[16] Partial differential equations, Graduate Studies in Math., Vol. 19, American Math. Soc. 1998. | Zbl
,[17] Topological approach to differential inclusions, Topological Methods in Differential Equations and Inclusions, (eds. A. Granas, M. Frigon), NATO ASI Series, Kluwer Acad. Publ. 1995, 129-190. | MR | Zbl
,[18] Ordinary differential equations, Birkhäuser, Boston 1982. | MR | Zbl
,[19] Graph-approximation of set-valued maps on noncompact domains, Topology and Appl., 83 (1998), 1-21. | MR | Zbl
,[20] Graph approximation of set-valued maps. A survey, Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis 2, J. P. Schauder Center for Nonlinear Studies Publ., Toruń 1998, 223-235. | Zbl
,[21] Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń 1997.
,[22] Analysis on Complex Manifolds, Masson & Cie (Paris), North Holland, Amsterdam 1968. | Zbl
,[23] Periodic solutions of differential inclusions on compact subsets of $\mathbb{R}^n$, J. Math. Anal. Appl., 148 (1990), 202-212. | MR | Zbl
,[24] Clarke's tangent cones and boundaries of closed sets in Rn, Nonlinear Anal., 3 (1979), 145-154. | MR | Zbl
,[25] Nonlinear functional analysis, Gordon & Breach, New York 1969. | Zbl
,[26] Derivate containers, inverse functions, and controllability, in Calculus of Variations and Control Theory, D. L. Russell, ed., Academic Press, New York 1976, 13-46. | MR | Zbl
,[27] Optimal Control of Differential and Functional Equations; Chap. XI (Russian Translation) Nauka, Moscow 1978. | Zbl
,[28] Fat homeomorphisms and unbounded derivare containers, J. Math. Anal. Appl., 81 (1981), 545-560. | MR | Zbl
,[29] Minimax Theorems, Birkhäuser, Boston 1996. | MR | Zbl
,[30] Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. | MR | Zbl
,