Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_2_a14, author = {Codec\'a, P. and Nair, M.}, title = {Calculating a determinant associated with multiplicative functions}, journal = {Bollettino della Unione matematica italiana}, pages = {545--555}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {2}, year = {2002}, zbl = {1173.11301}, mrnumber = {258847}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a14/} }
TY - JOUR AU - Codecá, P. AU - Nair, M. TI - Calculating a determinant associated with multiplicative functions JO - Bollettino della Unione matematica italiana PY - 2002 SP - 545 EP - 555 VL - 5B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a14/ LA - en ID - BUMI_2002_8_5B_2_a14 ER -
Codecá, P.; Nair, M. Calculating a determinant associated with multiplicative functions. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 545-555. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a14/
[1] Introduction to Matrix Analysis, McGraw-Hill, New York (1970). | MR | Zbl
,[2] Extremal Values of $\Delta(x,N)= \sum_{\substack {n\leq xN \\ (n,N) = 1}}1-x\phi(N)$, Canad. Math. Bull. (3), 41 (1998), 335-347. | MR | Zbl
- ,[3] Algebra lineare, La Nuova Italia Editrice, Scandicci, Firenze 1993.
,[4] Introduction to matrices with applications in statistics, Wordsworth Publishing Company Belmont, California 1969. | MR
,[5] An Extremal Property of the Möbius Function, Arch. Math., 53 (1989), 20-29. | MR | Zbl
- ,