$L^p$-improving properties of measures supported on curves on the Heisenberg group. II
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 527-543
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
$L^{p}$-$L^{q}$ estimates are obtained for convolution operators by finite measures supported on curves in the Heisenberg group whose tangent vector at the origin is parallel to the centre of the group.
@article{BUMI_2002_8_5B_2_a13,
author = {Secco, Silvia},
title = {$L^p$-improving properties of measures supported on curves on the {Heisenberg} group. {II}},
journal = {Bollettino della Unione matematica italiana},
pages = {527--543},
year = {2002},
volume = {Ser. 8, 5B},
number = {2},
zbl = {1113.42012},
mrnumber = {MR1911204},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a13/}
}
TY - JOUR AU - Secco, Silvia TI - $L^p$-improving properties of measures supported on curves on the Heisenberg group. II JO - Bollettino della Unione matematica italiana PY - 2002 SP - 527 EP - 543 VL - 5B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a13/ LA - en ID - BUMI_2002_8_5B_2_a13 ER -
Secco, Silvia. $L^p$-improving properties of measures supported on curves on the Heisenberg group. II. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 527-543. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a13/