Classification of initial data for the Riccati equation
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We consider a Cauchy problem $$y'(x)+y^{2}(x)= q(x),\qquad y(x)|_{x=x_{0}}=y_{0}$$ where $x_{0}$ , $y_{0}\in \mathbb{R}$ and $q(x)\in L_{1}^{\text{loc}}(R)$ is a non-negative function satisfying the condition: $$\int_{-\infty}^{x} q(t)\, dt> 0, \quad \int_{x}^{\infty} q(t) \, dt> 0 \qquad \text{ for } x\in \mathbb{R}.$$ We obtain the conditions under which $y(x)$ can be continued to all of $\mathbb{R}$. This depends on $x_{0}$ , $y_{0}$ and the properties of $q(x)$.
@article{BUMI_2002_8_5B_2_a12,
author = {Chernyavskaya, N. and Shuster, L.},
title = {Classification of initial data for the {Riccati} equation},
journal = {Bollettino della Unione matematica italiana},
pages = {511--525},
year = {2002},
volume = {Ser. 8, 5B},
number = {2},
zbl = {1072.32001},
mrnumber = {MR1911203},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/}
}
TY - JOUR AU - Chernyavskaya, N. AU - Shuster, L. TI - Classification of initial data for the Riccati equation JO - Bollettino della Unione matematica italiana PY - 2002 SP - 511 EP - 525 VL - 5B IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/ LA - en ID - BUMI_2002_8_5B_2_a12 ER -
Chernyavskaya, N.; Shuster, L. Classification of initial data for the Riccati equation. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/