Classification of initial data for the Riccati equation
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a Cauchy problem $$y'(x)+y^{2}(x)= q(x),\qquad y(x)|_{x=x_{0}}=y_{0}$$ where $x_{0}$ , $y_{0}\in \mathbb{R}$ and $q(x)\in L_{1}^{\text{loc}}(R)$ is a non-negative function satisfying the condition: $$\int_{-\infty}^{x} q(t)\, dt> 0, \quad \int_{x}^{\infty} q(t) \, dt> 0 \qquad \text{ for } x\in \mathbb{R}.$$ We obtain the conditions under which $y(x)$ can be continued to all of $\mathbb{R}$. This depends on $x_{0}$ , $y_{0}$ and the properties of $q(x)$.
@article{BUMI_2002_8_5B_2_a12,
     author = {Chernyavskaya, N. and Shuster, L.},
     title = {Classification of initial data for the {Riccati} equation},
     journal = {Bollettino della Unione matematica italiana},
     pages = {511--525},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {2},
     year = {2002},
     zbl = {1072.32001},
     mrnumber = {MR1911203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/}
}
TY  - JOUR
AU  - Chernyavskaya, N.
AU  - Shuster, L.
TI  - Classification of initial data for the Riccati equation
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 511
EP  - 525
VL  - 5B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/
LA  - en
ID  - BUMI_2002_8_5B_2_a12
ER  - 
%0 Journal Article
%A Chernyavskaya, N.
%A Shuster, L.
%T Classification of initial data for the Riccati equation
%J Bollettino della Unione matematica italiana
%D 2002
%P 511-525
%V 5B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/
%G en
%F BUMI_2002_8_5B_2_a12
Chernyavskaya, N.; Shuster, L. Classification of initial data for the Riccati equation. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/