Classification of initial data for the Riccati equation
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider a Cauchy problem $$y'(x)+y^{2}(x)= q(x),\qquad y(x)|_{x=x_{0}}=y_{0}$$ where $x_{0}$ , $y_{0}\in \mathbb{R}$ and $q(x)\in L_{1}^{\text{loc}}(R)$ is a non-negative function satisfying the condition: $$\int_{-\infty}^{x} q(t)\, dt> 0, \quad \int_{x}^{\infty} q(t) \, dt> 0 \qquad \text{ for } x\in \mathbb{R}.$$ We obtain the conditions under which $y(x)$ can be continued to all of $\mathbb{R}$. This depends on $x_{0}$ , $y_{0}$ and the properties of $q(x)$.
Consideriamo un problema di Cauchy $$y'(x)+y^{2}(x)= q(x),\qquad y(x)|_{x=x_{0}}=y_{0}$$ dove $x_{0}$ , $y_{0}\in \mathbb{R}$ e $q(x)\in L_{1}^{\text{loc}}(\mathbb{R})$ è una funzione non negativa che soddisfa la condizione: $$\int_{-\infty}^{x} q(t) \, dt > 0, \quad \int_{x}^{\infty} q(t) \, dt> 0 \qquad \text{ for } x\in \mathbb{R}.$$ Otteniamo le condizioni nelle quali $y(x)$ può essere continuata in tutto $\mathbb{R}$. Questo dipende da $x_{0}$, $y_{0}$ e dalle proprietà di $q(x)$.
@article{BUMI_2002_8_5B_2_a12,
     author = {Chernyavskaya, N. and Shuster, L.},
     title = {Classification of initial data for the {Riccati} equation},
     journal = {Bollettino della Unione matematica italiana},
     pages = {511--525},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {2},
     year = {2002},
     zbl = {1072.32001},
     mrnumber = {178571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/}
}
TY  - JOUR
AU  - Chernyavskaya, N.
AU  - Shuster, L.
TI  - Classification of initial data for the Riccati equation
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 511
EP  - 525
VL  - 5B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/
LA  - en
ID  - BUMI_2002_8_5B_2_a12
ER  - 
%0 Journal Article
%A Chernyavskaya, N.
%A Shuster, L.
%T Classification of initial data for the Riccati equation
%J Bollettino della Unione matematica italiana
%D 2002
%P 511-525
%V 5B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/
%G en
%F BUMI_2002_8_5B_2_a12
Chernyavskaya, N.; Shuster, L. Classification of initial data for the Riccati equation. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 511-525. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a12/

[1] R. Bellman-R. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, New York, 1965. | MR | Zbl

[2] N. Chernyavskaya-L. Shuster, Estimates for the Green function of a general Sturm-Liouville operator and their applications, Proc. Amer. Math. Soc., 127, no. 5 (1999), 1413-1426. | MR | Zbl

[3] N. Chernyavskaya-L. Shuster, Asymptotics on the diagonal of the Green function of a Sturm-Louiville operator and its applications, J. London Math. Soc., 61 (2) (2000), 506-530. | MR | Zbl

[4] N. Chernyavskaya-L. Shuster, On the WKB-method, Different. Uravnenija 25, 10 (1989), 1826-1829. | MR | Zbl

[5] N. Chernyavskaya-L. Shuster, Estimates for Green's function of the Sturm-Liouville operator, J. Diff. Eq., 111 (1994), 410-421. | MR | Zbl

[6] N. Chernyavskaya-L. Shuster, Weight summability of solutions of the Sturm-Liouville equation, J. Diff. Eq., 151, 456-473, 1999 preprint AMSPPJ0128-34-003 (1998). | MR | Zbl

[7] E. B. Davies-E. M. Harrell, Conformally flat Riemannian metrics, Schrödinger operators and semiclassical approximation, J. Diff. Eq., 66, 2 (1987), 165-188. | MR | Zbl

[8] E. Goursat, A Course in Mathematical Analysis, Vol. II, Part 2, Differential Equations, New York, 1959. | Zbl

[9] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964. | MR | Zbl

[10] K. Mynbaev-M. Otelbaev, Weighted Fuctional Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. | MR | Zbl

[11] W. A. Steklov, Sur une méthode nouvelle pour résoudre plusiers problèmes sur le développement d'une fonction arbitraire en séries infinies, Comptes Rendus, Paris, 144 (1907), 1329-1332. | Jbk 38.0437.02