Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 487-509.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper, we make some observations on the work of Di Fazio concerning $W^{1,p}$ estimates, $1 p\infty$, for solutions of elliptic equations $\text{div} \, A \nabla u = \text{div} f$ , on a domain $\Omega$ with Dirichlet data $0$ whenever $A \in VMO(\Omega)$ and $f \in L^{p} (\Omega)$. We weaken the assumptions allowing real and complex non-symmetric operators and $C^1$ boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose two such representations.
In questo lavoro esponiamo alcune osservazioni circa il lavoro di Di Fazio riguardante le stime $W^{1,p}$ per $1 p\infty$ per soluzioni di equazioni ellittiche del tipo $\text{div} \, A \nabla u = \text{div} \, f$ su un dominio $\Omega$ con dati di Dirichlet nulli, $A$ nella classe $VMO$ ed $f$ in $L^{p}$. Si considera il caso in cui i coefficienti della parte principale sono complessi e la frontiera di $\Omega$ è di classe $C^{1}$. Si considera inoltre il caso del problema di Neumann non omogeneo e si dimostrano risultati analoghi. Il principale strumento utilizzato è una conveniente formula di rappresentazione per la funzione di Green e di Neumann.
@article{BUMI_2002_8_5B_2_a11,
     author = {Auscher, P. and Qafsaoui, M.},
     title = {Observations on $W^{1,p}$ estimates for divergence elliptic equations with {VMO} coefficients},
     journal = {Bollettino della Unione matematica italiana},
     pages = {487--509},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {2},
     year = {2002},
     zbl = {1173.35419},
     mrnumber = {1475008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a11/}
}
TY  - JOUR
AU  - Auscher, P.
AU  - Qafsaoui, M.
TI  - Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 487
EP  - 509
VL  - 5B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a11/
LA  - en
ID  - BUMI_2002_8_5B_2_a11
ER  - 
%0 Journal Article
%A Auscher, P.
%A Qafsaoui, M.
%T Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients
%J Bollettino della Unione matematica italiana
%D 2002
%P 487-509
%V 5B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a11/
%G en
%F BUMI_2002_8_5B_2_a11
Auscher, P.; Qafsaoui, M. Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 487-509. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a11/

[1] J. M. Angeletti-S. Mazet-H. Tchamitchian, Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients. In Multiscale wavelet methods for partial differential equations, pages 495-539. Academic Press, San Diego, CA, 1997. | MR

[2] P. Auscher-Ph. Tchamitchian, Square root problem for divergence operators and related topics, volume 249 of Astérisque, Soc. Math. France, 1998. | MR | Zbl

[3] P. Auscher-Ph. Tchamitchian, On square roots of elliptic second order divergence operators on strongly lipschitz domains: $L^p$ theory, to appear in Math. Annalen. | MR | Zbl

[4] M. Bramanti-L. Brandolini, $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2) (2000), 781-822. | MR | Zbl

[5] F. Chiarenza, $L^p$ regularity for systems of PDEs, with coefficients in VMO. In Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), pages 1-32, Prometheus, Prague, 1994. | MR | Zbl

[6] F. Chiarenza-M. Franciosi-M. Frasca, Lp-estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1) (1994), 27-32. | MR | Zbl

[7] F. Chiarenza-M. Frasca-P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1) (1991), 149-168. | MR | Zbl

[8] F. Chiarenza-M. Frasca-P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (2) (1993), 841-853. | MR | Zbl

[9] R. R. Coifman-R. Rochberg-G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2), 103 (3) (1976), 611-635. | MR | Zbl

[10] G. David-J. L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2), 120 (2) (1984), 371-397. | MR | Zbl

[11] G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (2) (1996), 409-420. | MR | Zbl

[12] G. Di Fazio-D. K. Palagachev, Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolin., 37 (3) (1996), 537-556. | fulltext mini-dml | MR | Zbl

[13] G. Di Fazio-D. K. Palagachev, Oblique derivative problem for quasilinear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc., 53 (3) (1996), 501-513. | MR | Zbl

[14] E. B. Fabes-D. S. Jerison-C. E. Kenig, Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2), 119 (1) (1984), 121-141. | MR | Zbl

[15] D. Fan-Sh. Lu-D. Yang, Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., 5 (5) (1998), 425-440. | MR | Zbl

[16] T. Iwaniec-C. Sbordone, Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math., 74 (1998), 183-212. | MR | Zbl

[17] D. Jerison-C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1) (1995), 161-219. | MR | Zbl

[18] A. Maugeri-D. K. Palagachev-C. Vitanza, Oblique derivative problem for uniformly elliptic operators with VMO coefficients and applications, C. R. Acad. Sci. Paris Sér. I Math., 327 (1) (1998), 53-58. | MR | Zbl

[19] O. Mendez-M. Mitrea, Complex powers of the Neumann laplacian in lipschitz domains, Math. Nach., 1999, to appear. | MR | Zbl

[20] D. K. Palagachev, Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 347 (7) (1995), 2481-2493. | MR | Zbl

[21] M. A. Ragusa, Dirichlet problem in Morrey spaces for elliptic equations in nondivergence form with VMO coefficients. In Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), pages 385-390, Utrecht, 1998, VSP. | MR | Zbl

[22] H. G. Simader. On Dirichlet's boundary value problem, Springer-Verlag, Berlin, 1972. Lecture Notes in Mathematics, Vol. 268. | Zbl

[23] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970, Princeton Mathematical Series, No. 30. | MR | Zbl