Some relations on the lattice of varieties of completely regular semigroups
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 265-278.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

On the lattice $\mathcal{L}(\mathcal{CR})$ of varieties of completely regular semigroups considered as algebras with the binary multiplication and unary inversion within maximal subgroups, we study the relations $K_{l}$, $K$, $K_{r}$, $T_{l}$, $T$, $T_{r}$, $C$ and $L$. Here $K$ is the kernel relation, $T$ is the trace relation, $T_{l}$ and $T_{r}$ are the left and the right trace relations, respectively, $K_{p}=K \cap T_{p}$ for $p\in\{l,r \}$, $C$ is the core relation and $L$ is the local relation. We give an alternative definition for each of these relations $P$ of the form $$\mathcal{U}\ P\ \mathcal{V} \Leftrightarrow \mathcal{U} \cap \tilde{P} = \mathcal{V} \cap \tilde{P} \qquad (\mathcal{U}, \ \mathcal{V} \in \mathcal{L}(\mathcal{CR})),$$ for some subclasses $\tilde{P}$ of $\mathcal{CR}$. We also characterize the intersections of these relations and some joins within the lattice of equivalence relations on $\mathcal{L}(\mathcal{CR})$.
Nel reticolo $\mathcal{L}(\mathcal{CR})$ delle varietà dei semigruppi completamente regolari, considerati come algebre con la moltiplicazione binaria e l'inversione unaria tra i sottogruppi massimali, si studiano le relazioni $K_{l}$, $K$, $K_{r}$, $T_{l}$, $T$, $T_{r}$, $C$ e $L$. Qui $K$ denota la relazione nucleo, $T$ la relazione traccia, $T_{l}$ e $T_{r}$ le relazioni traccia sinistra e destra rispettivamente, $K_{p} =K \cap T_{p}$ per $p\in\{l,r \}$, $C$ la relazione core ed $L$ la relazione locale. Viene data una definizione alternativa per ciascuna di queste relazioni $P$ nella forma $$\mathcal{U}\ P\ \mathcal{V} \Leftrightarrow \mathcal{U} \cap \tilde{P} = \mathcal{V} \cap \tilde{P} \qquad (\mathcal{U}, \ \mathcal{V} \in \mathcal{L}(\mathcal{CR})),$$ per alcune sottoclassi $\tilde{P}$ di $\mathcal{CR}$. Si caratterizzano inoltre le intersezioni di queste relazioni ed alcuni dei loro join nel reticolo delle equivalenze su $\mathcal{L}(\mathcal{CR})$.
@article{BUMI_2002_8_5B_2_a0,
     author = {Petrich, Mario},
     title = {Some relations on the lattice of varieties of completely regular semigroups},
     journal = {Bollettino della Unione matematica italiana},
     pages = {265--278},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {2},
     year = {2002},
     zbl = {1072.20067},
     mrnumber = {1477717},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a0/}
}
TY  - JOUR
AU  - Petrich, Mario
TI  - Some relations on the lattice of varieties of completely regular semigroups
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 265
EP  - 278
VL  - 5B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a0/
LA  - en
ID  - BUMI_2002_8_5B_2_a0
ER  - 
%0 Journal Article
%A Petrich, Mario
%T Some relations on the lattice of varieties of completely regular semigroups
%J Bollettino della Unione matematica italiana
%D 2002
%P 265-278
%V 5B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a0/
%G en
%F BUMI_2002_8_5B_2_a0
Petrich, Mario. Some relations on the lattice of varieties of completely regular semigroups. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 2, pp. 265-278. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_2_a0/

[1] K. Auinger, Complete congruences on lattices of (existence) varieties, Semigroups and Languages, Porto Conf. 1994, World Scientific (1996), 1-10. | MR | Zbl

[2] P. R. Jones, Mal'cev product of varieties of completely regular semigroups, J. Austral. Math. Soc., 42 (1987), 227-246. | MR | Zbl

[3] F. Pastijn, The lattice of completely regular varieties, J. Austral. Math. Soc., 49 (1990), 24-42. | MR | Zbl

[4] F. Pastijn-M. Petrich, Congruences on regular semigroups, Trans. Amer. Math. Soc., 295 (1986), 607-633. | MR | Zbl

[5] M. Petrich, Semigroups certain of whose subsemigroups have identities, Czechoslovak J. Math., 16 (1966), 186-198. | fulltext mini-dml | MR | Zbl

[6] M. Petrich, The Green relations approach to congruences on completely regular semigroups, Ann. Mat. Pura Appl. (iv), 167 (1994), 117-146. | MR | Zbl

[7] M. Petrich-N. R. Reilly, Semigroups generated by certain operators on varieties of completely regular semigroups, Pacific J. Math., 132 (1988), 151-175. | fulltext mini-dml | MR | Zbl

[8] M. Petrich-N. R. Reilly, Operators related to $E$-disjunctive and fundamental completely regular semigroups, J. Algebra, 134 (1990), 1-27. | MR | Zbl

[9] M. Petrich-N. R. Reilly, Operators related to idempotent generated and monoid completely regular semigroups, J. Austral. Math. Soc., 49 (1990), 1-23. | MR | Zbl

[10] N. R. Reilly, Varieties of completely regular semigroups, J. Austral. Math. Soc., 38 (1985), 372-393. | MR | Zbl

[11] N. R. Reilly-S. Zhang, Commutativity of operators on the lattice of existence varieties, Monatsh. Math., 123 (1997), 337-364. | MR | Zbl