On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the Lyapunov exponent $\beta(E)$ for the one-dimensional Schrödinger operator with a quasi-periodic potential. Let $\Gamma\subset \mathbb{R}^{k}$ be the set of frequency vectors whose components are rationally independent. Let $\Gamma\subset \mathbb{R}^{k}$, and consider the complement in $\Gamma \times C^{r} (\mathbb{T}^{k} )$ of the set $\mathcal{D}$ where exponential dichotomy holds. We show that $\beta=0$ is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.
@article{BUMI_2002_8_5B_1_a6,
     author = {Fabbri, R.},
     title = {On the {Lyapunov} exponent and exponential dichotomy for the quasi-periodic {Schr\"odinger} operator},
     journal = {Bollettino della Unione matematica italiana},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1177.34108},
     mrnumber = {MR1881929},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/}
}
TY  - JOUR
AU  - Fabbri, R.
TI  - On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 149
EP  - 161
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/
LA  - en
ID  - BUMI_2002_8_5B_1_a6
ER  - 
%0 Journal Article
%A Fabbri, R.
%T On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
%J Bollettino della Unione matematica italiana
%D 2002
%P 149-161
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/
%G en
%F BUMI_2002_8_5B_1_a6
Fabbri, R. On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/