On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this paper we study the Lyapunov exponent $\beta(E)$ for the one-dimensional Schrödinger operator with a quasi-periodic potential. Let $\Gamma\subset \mathbb{R}^{k}$ be the set of frequency vectors whose components are rationally independent. Let $\Gamma\subset \mathbb{R}^{k}$, and consider the complement in $\Gamma \times C^{r} (\mathbb{T}^{k} )$ of the set $\mathcal{D}$ where exponential dichotomy holds. We show that $\beta=0$ is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.
@article{BUMI_2002_8_5B_1_a6,
author = {Fabbri, R.},
title = {On the {Lyapunov} exponent and exponential dichotomy for the quasi-periodic {Schr\"odinger} operator},
journal = {Bollettino della Unione matematica italiana},
pages = {149--161},
year = {2002},
volume = {Ser. 8, 5B},
number = {1},
zbl = {1177.34108},
mrnumber = {MR1881929},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/}
}
TY - JOUR AU - Fabbri, R. TI - On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator JO - Bollettino della Unione matematica italiana PY - 2002 SP - 149 EP - 161 VL - 5B IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/ LA - en ID - BUMI_2002_8_5B_1_a6 ER -
Fabbri, R. On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/