On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the Lyapunov exponent $\beta(E)$ for the one-dimensional Schrödinger operator with a quasi-periodic potential. Let $\Gamma\subset \mathbb{R}^{k}$ be the set of frequency vectors whose components are rationally independent. Let $\Gamma\subset \mathbb{R}^{k}$, and consider the complement in $\Gamma \times C^{r} (\mathbb{T}^{k} )$ of the set $\mathcal{D}$ where exponential dichotomy holds. We show that $\beta=0$ is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.
In questo lavoro viene studiato l'esponente di Lyapunov $\beta(E)$ per l'operatore di Schrödinger in una dimensione con potenziale quasi periodico. Indicato con $\Gamma\subset \mathbb{R}^{k}$ l'insieme delle frequenze le cui componenti sono razionalmente indipendenti e considerato $0\leq r 1$, si fa vedere come $\beta(E)$ risulti zero sul complementare in $\Gamma \times C^{r} (\mathbb{T}^{k} )$ dell'insieme $\mathcal{D}$ in cui si ha dicotomia esponenziale (D.E.). Le tecniche ed i metodi usati sono basati sulle proprieta' del numero di rotazione e della D.E. per l'operatore considerato.
@article{BUMI_2002_8_5B_1_a6,
     author = {Fabbri, R.},
     title = {On the {Lyapunov} exponent and exponential dichotomy for the quasi-periodic {Schr\"odinger} operator},
     journal = {Bollettino della Unione matematica italiana},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1177.34108},
     mrnumber = {1017741},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/}
}
TY  - JOUR
AU  - Fabbri, R.
TI  - On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 149
EP  - 161
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/
LA  - en
ID  - BUMI_2002_8_5B_1_a6
ER  - 
%0 Journal Article
%A Fabbri, R.
%T On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator
%J Bollettino della Unione matematica italiana
%D 2002
%P 149-161
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/
%G en
%F BUMI_2002_8_5B_1_a6
Fabbri, R. On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/

[Ch] G. Choquet, Lectures on Analysis, vol I, II, III. Benjamin N.Y., 1969. | Zbl

[CS] V. Chulaevsky-Ya. Sinai, Anderson localization for the 1-D discrete Schrödinger operators with two-frequency potential, Comm. Math. Phys, 125 (1989), 91-112. | fulltext mini-dml | MR | Zbl

[Co] A. Coppel, Dichotomies in Stability Theory, Lectures Notes in Mathematics, 629, Springer-Verlag, New York/Heidelberg/Berlin (1978). | MR | Zbl

[DC-J] C. De Concini-R. Johnson, The algebraic-geometric AKNS potentials, Erg. Th. Dyn. Sys. 7 (1992), 1-24. | MR | Zbl

[E1] L.H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Commun. Math. Phys., 146 (1992), 447-482. | fulltext mini-dml | MR | Zbl

[E2] L.H. Eliasson, Discrete one-dimensional quasi-periodic Schrodinger operator with pure point spectrum, Acta Math., 179 (1997), 153-196. | MR | Zbl

[F] R. Fabbri, Genericità dell'Iperbolicita nei Sistemi Differenziali Lineari di Dimensione Due, Ph.D. Thesis, Università di Firenze, 1997.

[FJ1] R. Fabbri-R. Johnson, On the Lyapunov exponent of certain $SL(2, \mathbb{R})$-valued cocycles, Diff. Eqns. and Dynam. Sys., 7, 3 (1999), 349-370. | MR | Zbl

[FJ2] R. Fabbri-R. Johnson, Genericity of exponential dichotomy for two-dimensional quasi-periodic linear differential systems, Ann. Mat. Pura ed Appl., 178 (2000), 175-193. | MR | Zbl

[Fe] H. Federer, Geometric Measure Theory, Springer-Verlag, New York / Heidelberg / Berlin, 1967. | Zbl

[FJP] R. Fabbri-R. Johnson-R. Pavani, On the Nature of the Spectrum of the Quasi-Periodic Schrodinger Operator, Nonlinear Analysis RWA, 3 (2001), 37-59. | MR | Zbl

[FSW] J. Fröhlich-T. Spencer-P. Wittwer, Localization for a class of one dimensional quasi-periodic Schrodinger operators, Commun. Math. Phys., 132 (1990), 5-25. | fulltext mini-dml | MR | Zbl

[GJ] R. Giachetti-R. Johnson, Spectral theory of two-dimensional almost periodic differential operators and its relation to classes of nonlinear evolution equations, Il Nuovo Cimento, 82 (1984), 125-168. | MR

[H] M. Herman, Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractèr local d¡¯un théorèm d'Arnold et de Moser sur le tore en dimension 2, Commun. Math. Helv., 58 (1983), 453-502. | MR | Zbl

[J1] R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, Journal of Differential Equations, 61 (1986), 54-78. | MR | Zbl

[J2] R. Johnson, Cantor spectrum for the quasi-periodic Schrodinger equation, Journal of Differential Equations, 91 (1991), 88-110. | MR | Zbl

[JM] R. Johnson-J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438. | fulltext mini-dml | MR | Zbl

[JPS] R. Johnson-K. J. Palmer-G. R. Sell, Ergodic properties of linear dynamical systems, Siam J. Math. Anal., 18 (1987), 1-33. | MR | Zbl

[K] S. Kotani, Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Scrodinger operators, Proc. Taniguchi Symp. S.S., Katata (1982), 225-247. | MR | Zbl

[MW] W. Magnus-S. Winkler, Hill's Equation, New York-London-Sydney, Interscience Publishers, 1966. | MR | Zbl

[Ma] R. Mañé, OSELEDEC'S THEOREM FROM THE GENERIC VIEWPOINT, PROC. INT. CONGR. MATH. 1983, WARSAW, 1296-1276. | MR | Zbl

[M1] V. Millionščikov, Proof of the existence...almost periodic coefficients, Differential Equations, 4 (1968), 203-205. | MR | Zbl

[M2] V. Millionščikov, Typicality of almost reducible systems with almost periodic coefficients, Differential Equations, 14 (1978), 448-450. | MR | Zbl

[Mo] J. Moser, An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helvetici, 56 (1981), 198-224. | MR | Zbl

[MP] J. Moser-J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helvetici, 59 (1984), 39-85. | MR | Zbl

[N] M. Nerurkar, Positive exponents for a dense class of continuous $SL(2, \mathbb{R})$-valued cocycles which arise as solutions to strongly accessible linear differential systems, Contemp. Math., vol. 215 (1998), AMS, 265-278. | MR | Zbl

[P1] K. Palmer, Exponential dichotomies and transversal homoclinic points, Jour. of Diff. Eqns., 55 (1984), 225-256. | MR | Zbl

[P2] K. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, Vol. 1 (1988), 265-306. | MR | Zbl

[SS] R. J. Sacker-G. R. Sell, A spectral theory for linear differential systems, Journal of Differential Equations, 27 (1978), 320-358. | MR | Zbl

[S] Ya. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, Journal of Statistical Physics, 46 (1987), 861-909. | MR | Zbl

[W1] M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. | Zbl

[W2] M. Wojtkowki, Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents, Comm. Math. Phys., 105 (1986), 391-414. | fulltext mini-dml | MR | Zbl

[Y1] L. S. Young, Some open sets of nonuniformly hyperbolic cocycles, Ergod. Th. & Dynam. Sys., 13 (1993), 409-415. | Zbl

[Y2] L. S. Young, Lyapounov exponents for some quasi-periodic cocycles, Ergod. Th. & Dynam. Sys., 17 (1997), 483-504. | Zbl