Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2002_8_5B_1_a6, author = {Fabbri, R.}, title = {On the {Lyapunov} exponent and exponential dichotomy for the quasi-periodic {Schr\"odinger} operator}, journal = {Bollettino della Unione matematica italiana}, pages = {149--161}, publisher = {mathdoc}, volume = {Ser. 8, 5B}, number = {1}, year = {2002}, zbl = {1177.34108}, mrnumber = {1017741}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/} }
TY - JOUR AU - Fabbri, R. TI - On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator JO - Bollettino della Unione matematica italiana PY - 2002 SP - 149 EP - 161 VL - 5B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/ LA - en ID - BUMI_2002_8_5B_1_a6 ER -
%0 Journal Article %A Fabbri, R. %T On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator %J Bollettino della Unione matematica italiana %D 2002 %P 149-161 %V 5B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/ %G en %F BUMI_2002_8_5B_1_a6
Fabbri, R. On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a6/
[Ch] Lectures on Analysis, vol I, II, III. Benjamin N.Y., 1969. | Zbl
,[CS] Anderson localization for the 1-D discrete Schrödinger operators with two-frequency potential, Comm. Math. Phys, 125 (1989), 91-112. | fulltext mini-dml | MR | Zbl
- ,[Co] Dichotomies in Stability Theory, Lectures Notes in Mathematics, 629, Springer-Verlag, New York/Heidelberg/Berlin (1978). | MR | Zbl
,[DC-J] The algebraic-geometric AKNS potentials, Erg. Th. Dyn. Sys. 7 (1992), 1-24. | MR | Zbl
- ,[E1] Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Commun. Math. Phys., 146 (1992), 447-482. | fulltext mini-dml | MR | Zbl
,[E2] Discrete one-dimensional quasi-periodic Schrodinger operator with pure point spectrum, Acta Math., 179 (1997), 153-196. | MR | Zbl
,[F] Genericità dell'Iperbolicita nei Sistemi Differenziali Lineari di Dimensione Due, Ph.D. Thesis, Università di Firenze, 1997.
,[FJ1] On the Lyapunov exponent of certain $SL(2, \mathbb{R})$-valued cocycles, Diff. Eqns. and Dynam. Sys., 7, 3 (1999), 349-370. | MR | Zbl
- ,[FJ2] Genericity of exponential dichotomy for two-dimensional quasi-periodic linear differential systems, Ann. Mat. Pura ed Appl., 178 (2000), 175-193. | MR | Zbl
- ,[Fe] Geometric Measure Theory, Springer-Verlag, New York / Heidelberg / Berlin, 1967. | Zbl
,[FJP] On the Nature of the Spectrum of the Quasi-Periodic Schrodinger Operator, Nonlinear Analysis RWA, 3 (2001), 37-59. | MR | Zbl
- - ,[FSW] Localization for a class of one dimensional quasi-periodic Schrodinger operators, Commun. Math. Phys., 132 (1990), 5-25. | fulltext mini-dml | MR | Zbl
- - ,[GJ] Spectral theory of two-dimensional almost periodic differential operators and its relation to classes of nonlinear evolution equations, Il Nuovo Cimento, 82 (1984), 125-168. | MR
- ,[H] Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractèr local d¡¯un théorèm d'Arnold et de Moser sur le tore en dimension 2, Commun. Math. Helv., 58 (1983), 453-502. | MR | Zbl
,[J1] Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, Journal of Differential Equations, 61 (1986), 54-78. | MR | Zbl
,[J2] Cantor spectrum for the quasi-periodic Schrodinger equation, Journal of Differential Equations, 91 (1991), 88-110. | MR | Zbl
,[JM] The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438. | fulltext mini-dml | MR | Zbl
- ,[JPS] Ergodic properties of linear dynamical systems, Siam J. Math. Anal., 18 (1987), 1-33. | MR | Zbl
- - ,[K] Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Scrodinger operators, Proc. Taniguchi Symp. S.S., Katata (1982), 225-247. | MR | Zbl
,[MW] Hill's Equation, New York-London-Sydney, Interscience Publishers, 1966. | MR | Zbl
- ,[Ma] OSELEDEC'S THEOREM FROM THE GENERIC VIEWPOINT, PROC. INT. CONGR. MATH. 1983, WARSAW, 1296-1276. | MR | Zbl
,[M1] Proof of the existence...almost periodic coefficients, Differential Equations, 4 (1968), 203-205. | MR | Zbl
,[M2] Typicality of almost reducible systems with almost periodic coefficients, Differential Equations, 14 (1978), 448-450. | MR | Zbl
,[Mo] An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helvetici, 56 (1981), 198-224. | MR | Zbl
,[MP] An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helvetici, 59 (1984), 39-85. | MR | Zbl
- ,[N] Positive exponents for a dense class of continuous $SL(2, \mathbb{R})$-valued cocycles which arise as solutions to strongly accessible linear differential systems, Contemp. Math., vol. 215 (1998), AMS, 265-278. | MR | Zbl
,[P1] Exponential dichotomies and transversal homoclinic points, Jour. of Diff. Eqns., 55 (1984), 225-256. | MR | Zbl
,[P2] Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, Vol. 1 (1988), 265-306. | MR | Zbl
,[SS] A spectral theory for linear differential systems, Journal of Differential Equations, 27 (1978), 320-358. | MR | Zbl
- ,[S] Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, Journal of Statistical Physics, 46 (1987), 861-909. | MR | Zbl
,[W1] Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. | Zbl
,[W2] Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents, Comm. Math. Phys., 105 (1986), 391-414. | fulltext mini-dml | MR | Zbl
,[Y1] Some open sets of nonuniformly hyperbolic cocycles, Ergod. Th. & Dynam. Sys., 13 (1993), 409-415. | Zbl
,[Y2] Lyapounov exponents for some quasi-periodic cocycles, Ergod. Th. & Dynam. Sys., 17 (1997), 483-504. | Zbl
,