Groups in which the prime graph is a tree
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 131-148

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.
@article{BUMI_2002_8_5B_1_a5,
     author = {Lucido, Maria Silvia},
     title = {Groups in which the prime graph is a tree},
     journal = {Bollettino della Unione matematica italiana},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1097.20022},
     mrnumber = {MR1881928},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/}
}
TY  - JOUR
AU  - Lucido, Maria Silvia
TI  - Groups in which the prime graph is a tree
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 131
EP  - 148
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/
LA  - en
ID  - BUMI_2002_8_5B_1_a5
ER  - 
%0 Journal Article
%A Lucido, Maria Silvia
%T Groups in which the prime graph is a tree
%J Bollettino della Unione matematica italiana
%D 2002
%P 131-148
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/
%G en
%F BUMI_2002_8_5B_1_a5
Lucido, Maria Silvia. Groups in which the prime graph is a tree. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 131-148. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/