Groups in which the prime graph is a tree
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 131-148.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The prime graph $\Gamma(G)$ of a finite group $G$ is defined as follows: the set of vertices is $\pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$, $q$ are joined by an edge (we write $p\sim q$) if and only if there exists an element in $G$ of order $pq$. We study the groups $G$ such that the prime graph $\Gamma(G)$ is a tree, proving that, in this case, $|\pi (G)|\leq 8$.
Il «prime graph» $\Gamma(G)$ di un gruppo finito $G$ è definito nel modo seguente: l'insieme dei vertici è $\pi(G)$, cioè l'insieme dei primi che dividono l'ordine del gruppo e due vertici $p$, $q$ costituiscono un lato (e si indica $p\sim q$) se esiste un elemento in $G$ di ordine $pq$. Si studiano i gruppi $G$ tali che il grafo $\Gamma(G)$ è un albero, dimostrando che, in questo caso, $|\pi (G)|\leq 8$.
@article{BUMI_2002_8_5B_1_a5,
     author = {Lucido, Maria Silvia},
     title = {Groups in which the prime graph is a tree},
     journal = {Bollettino della Unione matematica italiana},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1097.20022},
     mrnumber = {827219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/}
}
TY  - JOUR
AU  - Lucido, Maria Silvia
TI  - Groups in which the prime graph is a tree
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 131
EP  - 148
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/
LA  - en
ID  - BUMI_2002_8_5B_1_a5
ER  - 
%0 Journal Article
%A Lucido, Maria Silvia
%T Groups in which the prime graph is a tree
%J Bollettino della Unione matematica italiana
%D 2002
%P 131-148
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/
%G en
%F BUMI_2002_8_5B_1_a5
Lucido, Maria Silvia. Groups in which the prime graph is a tree. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 131-148. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a5/

[1] J. Conway-R. Curtis-S. Norton-R. Parker-R. Wilson, Atlas of finite Groups, Clarendon Press, Oxford (1985). | MR | Zbl

[2] R. Burkhardt, Über di Zerlegungszahlen der Suzukigruppen $Sz(q)$, Journal of Algebra, 59 (1979), 421-433. | MR | Zbl

[3] J. D. Dixon, The structure of linear groups, New York (1971). | Zbl

[4] J. D. Dixon-B. Mortimer, Permutation Groups, Springer, Graduate Texts in Mathematics n. 163 (1996). | MR | Zbl

[5] L. Dornhoff, Group representation Theory, Part A, Dekker, New York (1971). | MR | Zbl

[6] P. Fleischmann-W. Lempken-P. H. Tiep, Finite $p'$-semiregular groups, Journal of Algebra, 188 (1997), 547-579. | MR | Zbl

[7] K. W. Gruenberg-K. W. Roggenkamp, Decomposition of the augmentation ideal and relation modules of a finite group, Proc. London Math. Soc., 31 (1975), 149-166. | MR | Zbl

[8] A. S. Kondratév, Prime graph components of finite simple groups, Mat. Sb., 180 n. 6 (1989), 787-797 (translated in Math. of the USSR, 67 (1990), 235-247). | MR | Zbl

[9] N. Iiyori-H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, Journal of Algebra, 155 (1993), 335-343. | MR | Zbl

[10] M. S. Lucido, Prime graph components of finite almost simple groups, Rendiconti del Seminario Matematico dell'Università di Padova, 102 (1999), 1-22. | fulltext mini-dml | MR | Zbl

[11] M. S. Lucido, The diameter of the prime graph of finite groups, Journal of Group Theory, 2 (1999), 157-172. | MR | Zbl

[12] V. D. Mazurov, The set of orders elements in a finite group, Algebra and Logic, vol. 33, n. 1 (1994), 49-55. | MR | Zbl

[13] D. S. Passman, Permutation groups, W. A. Benjamin, New York (1968). | MR | Zbl

[14] D. R. Robinson, A course on the theory of groups, Springer-Verlag, Berlin Heidelberg - New York (1982). | Zbl

[15] J. S. Williams, Prime graph components of finite groups, Journal of Algebra, 69 (1981), 487-513. | MR | Zbl