On the range of elliptic operators discontinuous at one point
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 123-129
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $L$ be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in $\mathbb{R}^{d}$ ($d\geq3$) and continuous in $\mathbb{R}^{d} \setminus \{0\}$. Then, if $\Omega\subset \mathbb{R}^{d}$ is a bounded domain, we prove that $L(W^{2, p }(\Omega))$ is dense in $L^{p}(\Omega)$ for any $p\in(1, d/2 ]$.
@article{BUMI_2002_8_5B_1_a4,
author = {Giannotti, Cristina},
title = {On the range of elliptic operators discontinuous at one point},
journal = {Bollettino della Unione matematica italiana},
pages = {123--129},
publisher = {mathdoc},
volume = {Ser. 8, 5B},
number = {1},
year = {2002},
zbl = {1178.47032},
mrnumber = {MR1881447},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/}
}
TY - JOUR AU - Giannotti, Cristina TI - On the range of elliptic operators discontinuous at one point JO - Bollettino della Unione matematica italiana PY - 2002 SP - 123 EP - 129 VL - 5B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/ LA - en ID - BUMI_2002_8_5B_1_a4 ER -
Giannotti, Cristina. On the range of elliptic operators discontinuous at one point. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/