On the range of elliptic operators discontinuous at one point
Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 123-129.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $L$ be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in $\mathbb{R}^{d}$ ($d\geq3$) and continuous in $\mathbb{R}^{d} \setminus \{0\}$. Then, if $\Omega\subset \mathbb{R}^{d}$ is a bounded domain, we prove that $L(W^{2, p }(\Omega))$ is dense in $L^{p}(\Omega)$ for any $p\in(1, d/2 ]$.
Si considerano operatori uniformemente ellittici del secondo ordine in forma non variazionale, $L$, a coefficienti misurabili e limitati in $\mathbb{R}^{d}$ ($d \geq 3$) e continui in $\mathbb{R}^{d} \setminus \{0\}$ e si prova il seguente risultato: se $\Omega\subset \mathbb{R}^{d}$ è un dominio limitato, allora $L(W^{2, p}(\Omega))$ è denso in $L^{p}(\Omega)$ per ogni $p\in (1, d/2]$.
@article{BUMI_2002_8_5B_1_a4,
     author = {Giannotti, Cristina},
     title = {On the range of elliptic operators discontinuous at one point},
     journal = {Bollettino della Unione matematica italiana},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {Ser. 8, 5B},
     number = {1},
     year = {2002},
     zbl = {1178.47032},
     mrnumber = {81416},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/}
}
TY  - JOUR
AU  - Giannotti, Cristina
TI  - On the range of elliptic operators discontinuous at one point
JO  - Bollettino della Unione matematica italiana
PY  - 2002
SP  - 123
EP  - 129
VL  - 5B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/
LA  - en
ID  - BUMI_2002_8_5B_1_a4
ER  - 
%0 Journal Article
%A Giannotti, Cristina
%T On the range of elliptic operators discontinuous at one point
%J Bollettino della Unione matematica italiana
%D 2002
%P 123-129
%V 5B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/
%G en
%F BUMI_2002_8_5B_1_a4
Giannotti, Cristina. On the range of elliptic operators discontinuous at one point. Bollettino della Unione matematica italiana, Série 8, 5B (2002) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/BUMI_2002_8_5B_1_a4/

[1] O. Arena, On the range of Ural'tseva's Axially symmetric Operator in Sobolev Spaces, Partial Differential Equations (P. Marcellini, G. Talenti, E. Vesentini Eds.) Dekker (1996). | Zbl

[2] D. Gilbarg-J. Serrin, On isolated singularities of solutions of second order elliptic equations, J. Anal. Math., 4 (1955-56), 309-340. | MR | Zbl

[3] D. Gilbarg-N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer (1983). | MR | Zbl

[4] O. A. Ladyzhenskaya-N. N. Ural'Tseva, Linear and Quasilinear Elliptic Equations, A.P. (1968). | MR | Zbl

[5] P. Manselli, On the range of elliptic, second order, nonvariational operators in Sobolev spaces, Annali Mat. pura e appl., (IV), Vol. CLXXVIII (2000), 67-80. | MR | Zbl

[6] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson Paris 1967. | MR

[7] C. Pucci, Operatori ellittici estremanti, Annali di Matematica Pura ed Applicata (IV), Vol. LXXII (1966), 141-170. | MR | Zbl

[8] N. N. Ural'Tseva, Impossibility of $W^{2,p}$ bounds for multidimensional elliptic operators with discontinuous coefficients, L.O.M.I., 5 (1967), 250-254. | MR | Zbl