Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_3_a4, author = {Caldiroli, Paolo and Musina, Roberta}, title = {Stationary states for a two-dimensional singular {Schr\"odinger} equation}, journal = {Bollettino della Unione matematica italiana}, pages = {609--633}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {3}, year = {2001}, zbl = {1182.35094}, mrnumber = {450957}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a4/} }
TY - JOUR AU - Caldiroli, Paolo AU - Musina, Roberta TI - Stationary states for a two-dimensional singular Schrödinger equation JO - Bollettino della Unione matematica italiana PY - 2001 SP - 609 EP - 633 VL - 4B IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a4/ LA - en ID - BUMI_2001_8_4B_3_a4 ER -
%0 Journal Article %A Caldiroli, Paolo %A Musina, Roberta %T Stationary states for a two-dimensional singular Schrödinger equation %J Bollettino della Unione matematica italiana %D 2001 %P 609-633 %V 4B %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a4/ %G en %F BUMI_2001_8_4B_3_a4
Caldiroli, Paolo; Musina, Roberta. Stationary states for a two-dimensional singular Schrödinger equation. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 609-633. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a4/
[1] Sobolev spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] Existence and Bifurcation of Solutions for an Elliptic Degenerate Problem, J. Diff. Eq., 134 (1997), 1-25. | MR | Zbl
- ,[3] Some simple nonlinear PDE's without solutions, Boll. Un. Mat. Ital. (8), 1-B (1998), 223-262. | fulltext bdim | fulltext mini-dml | MR | Zbl
- ,[4] First Order Interpolation Inequalities with Weight, Compositio Math., 53 (1984), 259-275. | fulltext mini-dml | MR | Zbl
- - ,[5] Singular elliptic problems with critical growth, Comm. Part. Diff. Eq., to appear. | MR | Zbl
- ,[6] On the Existence of Extremal Functions for a Weighted Sobolev Embedding with Critical Exponent, Calc. Var., 8 (1999), 365-387. | MR | Zbl
- ,[7] Existence and non existence results for a class of nonlinear singular Sturm-Liouville equations, Adv. Diff. Eq., to appear. | Zbl
- ,[8] On a Class of 2-dimensional Singular Elliptic Problems, Proc. Roy. Soc. Edinburgh Sect. A, to appear. | MR | Zbl
- ,[9] Singular Potentials, Rev. Modern Phys., 43 (1971), 36-98. | MR
- - ,[10] Concentration estimates for critical problems, Ricerche Mat., 48 (1999), Supplemento, 233-257. | MR | Zbl
- ,[11] The concentration-compactness principle in the calculus of variations. The Locally compact case, parts 1-2, Ann. Inst. H. Poincaré Anal. non linéaire, 1 (1984), 109-145 and 223-283. | fulltext mini-dml | fulltext mini-dml | MR | Zbl
,[12] On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Eq., 1 (1996), 241-264. | MR | Zbl
,[13] Critical Phenomena in Linear Elliptic Problems, J. Funct. Anal., 154 (1998), 42-66. | MR | Zbl
,