The hyperKähler geometry associated to Wolf spaces
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 587-595.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sia $G$ un grupo di Lie compatto e semplice. Sia $\mathcal{O}_{\text{min}}$ la più piccola orbita nilpotente non-banale nell'algebra di Lie complessa $g^{\mathbb{C}}$. Si presenta una costruzione diretta di teoria di Lie delle metriche iperKahler su $\mathcal{O}_{\text{min}}$ con potenziale Kahleriano $G$-invariante e compatibili con la forma simplettica complessa di Kostant-Kirillov-Souriau. In particolare si ottengono le metriche iperKahler dei fibrati associati sugli spazi di Wolf (spazi simmetrici quaternionali a curvatura scalare positiva).
@article{BUMI_2001_8_4B_3_a2,
     author = {Kobak, Piotr and Swann, Andrew},
     title = {The {hyperK\"ahler} geometry associated to {Wolf} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {587--595},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {3},
     year = {2001},
     zbl = {1182.53041},
     mrnumber = {231314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a2/}
}
TY  - JOUR
AU  - Kobak, Piotr
AU  - Swann, Andrew
TI  - The hyperKähler geometry associated to Wolf spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 587
EP  - 595
VL  - 4B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a2/
LA  - en
ID  - BUMI_2001_8_4B_3_a2
ER  - 
%0 Journal Article
%A Kobak, Piotr
%A Swann, Andrew
%T The hyperKähler geometry associated to Wolf spaces
%J Bollettino della Unione matematica italiana
%D 2001
%P 587-595
%V 4B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a2/
%G en
%F BUMI_2001_8_4B_3_a2
Kobak, Piotr; Swann, Andrew. The hyperKähler geometry associated to Wolf spaces. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 3, pp. 587-595. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_3_a2/

[1] D. V. Alekseevsky, Compact quaternion spaces, Funktsional. Anal. i Prilozhen., 2, no. 2 (1968), 11-20, English translation: Functional Anal. Appl., 2 (1968), 106-114. | MR | Zbl

[2] D. V. Alekseevsky-V. Cortés, Homogeneous quaternionic Kähler manifolds of unimodular group, Bolletino U. M. I., 11-B (1997), no. Suppl. fasc. 2, 217-229. | MR | Zbl

[3] R. Bielawski, Invariant hyperKähler metrics with a homogeneous complex structure, Math. Proc. Camb. Phil. Soc., 122 (1997), 473-482. | MR | Zbl

[4] F. E. Burstall-J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, with applications to harmonic maps of Riemann surfaces, Lecture Notes in Mathematics, vol. 1424, Springer-Verlag, 1990. | MR | Zbl

[5] E. Cartan, Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 54 (1926), 214-264 (part 1). | fulltext mini-dml | Jbk 52.0425.01 | MR

[6] E. Cartan, Sur une classe remarquable d'espace de riemann, Bull. Soc. Math. France, 55 (1927), 114-134 (part 2). | fulltext mini-dml | Jbk 53.0390.01 | MR

[7] A. S. Dancer-A. F. Swann, HyperKähler metrics of cohomogeneity one, J. Geom. and Phys., 21 (1997), 218-230. | MR | Zbl

[8] A. S. Dancer-A. F. Swann, Quaternionic Kähler manifolds of cohomogeneity one, International J. Math., 10, no. 5 (1999), 541-570. | MR | Zbl

[9] T. Eguchi-A. Hanson, Asymptotically flat self-dual solutions to Euclidean gravity, Phys. Lett. B, 74 (1978), 249-251. | MR

[10] N. J. Hitchin, Monopoles, minimal surfaces and algebraic curves, Les presses del'Université de Montréal, Montréal, 1987. | MR | Zbl

[11] P. Z. Kobak-A. F. Swann, HyperKähler potentials in cohomogeneity two, J. reine angew. Math., 531 (2001), 121-139. | MR | Zbl

[12] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Differential Geom., 32 (1990), 473-490. | fulltext mini-dml | MR | Zbl

[13] A. F. Swann, HyperKähler and quaternionic Kähler geometry, Math. Ann., 289 (1991), 421-450. | MR | Zbl

[14] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047. | MR | Zbl