Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 311-317.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si considera una classe di equazioni ellittiche semilineari su $\mathbb{R}^{N}$ della forma $-\Delta u + u= a(x) |u|^{p-1}u$ con $p>1$ sottocritico (o con nonlinearità più generali) e $a(x)$ funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti $a(x)$ limitati su $\mathbb{R}^{N}$ e non negativi all'infinito.
@article{BUMI_2001_8_4B_2_a1,
     author = {Alessio, Francesca and Caldiroli, Paolo and Montecchiari, Piero},
     title = {Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {2},
     year = {2001},
     zbl = {1024.35033},
     mrnumber = {1153310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/}
}
TY  - JOUR
AU  - Alessio, Francesca
AU  - Caldiroli, Paolo
AU  - Montecchiari, Piero
TI  - Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 311
EP  - 317
VL  - 4B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/
LA  - en
ID  - BUMI_2001_8_4B_2_a1
ER  - 
%0 Journal Article
%A Alessio, Francesca
%A Caldiroli, Paolo
%A Montecchiari, Piero
%T Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$
%J Bollettino della Unione matematica italiana
%D 2001
%P 311-317
%V 4B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/
%G en
%F BUMI_2001_8_4B_2_a1
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 311-317. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/

[1] S. Alama-Y. Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Diff. Eq., 96 (1992), 88-115. | MR | Zbl

[2] F. Alessio-P. Montecchiari, Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 107-135. | fulltext mini-dml | MR | Zbl

[3] F. Alessio-P. Caldiroli-P. Montecchiari, Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 885-901. | MR | Zbl

[4] F. Alessio-P. Caldiroli-P. Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 47-68. | fulltext mini-dml | MR | Zbl

[5] F. Alessio-P. Caldiroli-P. Montecchiari, On the existence of homoclinics for the asymptotically periodic Duffing equation, Top. Meth. Nonlinear Anal., 12 (1998), 275-292. | MR | Zbl

[6] A. Ambrosetti-M. Badiale, Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 233-252. | fulltext mini-dml | MR | Zbl

[7] A. Ambrosetti-M. Badiale-S. Cingolani, Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., 140 (1997), 285-300. | MR | Zbl

[8] S. Angenent, The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.) F37 (1987). | MR | Zbl

[9] A. Bahri-Y. Y. Li, On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in $\mathbb{R}^n$, Rev. Mat. Iberoamericana, 6 (1990), 1-15. | MR | Zbl

[10] A. Bahri-P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré, Anal. non linéaire, 14 (1997), 365-413. | fulltext mini-dml | MR | Zbl

[11] H. Berestycki-P. L. Lions, Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-345. | MR | Zbl

[12] A. S. Besicovitch, Almost Periodic Functions, Dover Pubblications Inc. (1954). | MR | Zbl

[13] D. M. Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in $\mathbb{R}^n$, Nonlinear Anal. T.M.A., 15 (1990), 1045-1052. | MR | Zbl

[14] D. M. Cao, Multiple solutions of a semilinear elliptic equation in $\mathbb{R}^n$, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 593-604. | fulltext mini-dml | MR | Zbl

[15] D. M. Cao AND E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^n$, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 13 (1996), 567-588. | fulltext mini-dml | MR | Zbl

[16] V. Coti Zelati-I. Ekeland-E. Seéré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160. | MR | Zbl

[17] V. Coti Zelati-P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269. | MR | Zbl

[18] M. Del Pino-P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 127-149. | fulltext mini-dml | MR | Zbl

[19] W. Y. Ding-W. M. Ni, On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), 283-308. | MR | Zbl

[20] M. J. Esteban-P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), 1-14. | MR | Zbl

[21] B. Gidas-W.-M. Ni-L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies, 7A (1981), 369-402. | Zbl

[22] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. | MR | Zbl

[23] Y. Li, Remarks on a semilinear elliptic equations on $\mathbb{R}^N$, J. Diff. Eq., 74 (1988), 34-39. | MR | Zbl

[24] Y. Y. Li, Prescribing scalar curvature on $S^3$, $S^4$ and related problems, J. Funct. Anal., 118 (1993), 43-118. | MR | Zbl

[25] Y. Y. Li, On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. | MR | Zbl

[26] P.-L. Lions, The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145 and 223-283. | fulltext mini-dml | fulltext mini-dml | Zbl

[27] P. Montecchiari, Multiplicity results for a class of Semilinear Elliptic Equations on $\mathbb{R}^m$, Rend. Sem. Mat. Univ. Padova, 95 (1996), 1-36. | fulltext mini-dml | MR | Zbl

[28] R. Musina, Multiple positive solutions of a scalar field equation in $\mathbb{R}^n$, Top. Meth. Nonlinear Anal., 7 (1996), 171-185. | MR | Zbl

[29] W. M. Ni, Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W. M. Ni, L. A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988). | MR | Zbl

[30] P. H. Rabinowitz, A note on a semilinear elliptic equation on $\mathbb{R}^n$, Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quaderni della Scuola Normale Superiore, Pisa) (1991). | MR | Zbl

[31] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. | MR | Zbl

[32] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 561-590. | fulltext mini-dml | MR | Zbl

[33] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1979), 149-162. | fulltext mini-dml | MR | Zbl

[34] C. A. Stuart, Bifurcation in $L^p(\mathbb{R}^n)$ for a semilinear elliptic equation, Proc. London Math. Soc., 57 (1988), 511-541. | MR | Zbl