Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_2_a1, author = {Alessio, Francesca and Caldiroli, Paolo and Montecchiari, Piero}, title = {Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$}, journal = {Bollettino della Unione matematica italiana}, pages = {311--317}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {2}, year = {2001}, zbl = {1024.35033}, mrnumber = {1153310}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/} }
TY - JOUR AU - Alessio, Francesca AU - Caldiroli, Paolo AU - Montecchiari, Piero TI - Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$ JO - Bollettino della Unione matematica italiana PY - 2001 SP - 311 EP - 317 VL - 4B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/ LA - en ID - BUMI_2001_8_4B_2_a1 ER -
%0 Journal Article %A Alessio, Francesca %A Caldiroli, Paolo %A Montecchiari, Piero %T Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$ %J Bollettino della Unione matematica italiana %D 2001 %P 311-317 %V 4B %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/ %G en %F BUMI_2001_8_4B_2_a1
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. Infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 2, pp. 311-317. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_2_a1/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Diff. Eq., 96 (1992), 88-115. | MR | Zbl
- ,[2] Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity, Ann. Inst. H. Poincaré, Anal. non linéaire, 16 (1999), 107-135. | fulltext mini-dml | MR | Zbl
- ,[3] Genericity of the multibump dynamics for almost periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 885-901. | MR | Zbl
- - ,[4] Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in $\mathbb{R}^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998), 47-68. | fulltext mini-dml | MR | Zbl
- - ,[5] On the existence of homoclinics for the asymptotically periodic Duffing equation, Top. Meth. Nonlinear Anal., 12 (1998), 275-292. | MR | Zbl
- - ,[6] Homoclinics: Poincarè-Melnikov type results via a variational approach, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 233-252. | fulltext mini-dml | MR | Zbl
- ,[7] Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., 140 (1997), 285-300. | MR | Zbl
- - ,[8] The Shadowing Lemma for Elliptic PDE, Dynamics of Infinite Dimensional Systems (S. N. Chow and J. K. Hale eds.) F37 (1987). | MR | Zbl
,[9] On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in $\mathbb{R}^n$, Rev. Mat. Iberoamericana, 6 (1990), 1-15. | MR | Zbl
- ,[10] On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré, Anal. non linéaire, 14 (1997), 365-413. | fulltext mini-dml | MR | Zbl
- ,[11] Nonlinear scalar field equations, Arch. Rat. Mech. Anal., 82 (1983), 313-345. | MR | Zbl
- ,[12] Almost Periodic Functions, Dover Pubblications Inc. (1954). | MR | Zbl
,[13] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in $\mathbb{R}^n$, Nonlinear Anal. T.M.A., 15 (1990), 1045-1052. | MR | Zbl
,[14] Multiple solutions of a semilinear elliptic equation in $\mathbb{R}^n$, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 593-604. | fulltext mini-dml | MR | Zbl
,[15] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in $\mathbb{R}^n$, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 13 (1996), 567-588. | fulltext mini-dml | MR | Zbl
AND ,[16] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160. | MR | Zbl
- - ,[17] Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1217-1269. | MR | Zbl
- ,[18] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 15 (1998), 127-149. | fulltext mini-dml | MR | Zbl
- ,[19] On the existence of a positive entire solution of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), 283-308. | MR | Zbl
- ,[20] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), 1-14. | MR | Zbl
- ,[21] Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Math. Anal. Appl. Part A, Adv. Math. Suppl. Studies, 7A (1981), 369-402. | Zbl
- - ,[22] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. Part. Diff. Eq., 21 (1996), 787-820. | MR | Zbl
,[23] Remarks on a semilinear elliptic equations on $\mathbb{R}^N$, J. Diff. Eq., 74 (1988), 34-39. | MR | Zbl
,[24] Prescribing scalar curvature on $S^3$, $S^4$ and related problems, J. Funct. Anal., 118 (1993), 43-118. | MR | Zbl
,[25] On a singularly perturbed elliptic equation, Adv. Diff. Eq., 2 (1997), 955-980. | MR | Zbl
,[26] The concentration–compactness principle in the calculus of variations: the locally compact case, Part I and II, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145 and 223-283. | fulltext mini-dml | fulltext mini-dml | Zbl
,[27] Multiplicity results for a class of Semilinear Elliptic Equations on $\mathbb{R}^m$, Rend. Sem. Mat. Univ. Padova, 95 (1996), 1-36. | fulltext mini-dml | MR | Zbl
,[28] Multiple positive solutions of a scalar field equation in $\mathbb{R}^n$, Top. Meth. Nonlinear Anal., 7 (1996), 171-185. | MR | Zbl
,[29] Some aspects of semilinear elliptic equations, Nonlinear diffusion equations and their equilibrium states (W. M. Ni, L. A. Peletier and J. Serrin, eds.) Springer Verlag, Berlin (1988). | MR | Zbl
,[30] A note on a semilinear elliptic equation on $\mathbb{R}^n$, Nonlinear Analysis, a tribute in honour of Giovanni Prodi (A. Ambrosetti and A. Marino, eds., Quaderni della Scuola Normale Superiore, Pisa) (1991). | MR | Zbl
,[31] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291. | MR | Zbl
,[32] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 10 (1993), 561-590. | fulltext mini-dml | MR | Zbl
,[33] Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1979), 149-162. | fulltext mini-dml | MR | Zbl
,[34] Bifurcation in $L^p(\mathbb{R}^n)$ for a semilinear elliptic equation, Proc. London Math. Soc., 57 (1988), 511-541. | MR | Zbl
,