Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_1_a8, author = {Flamini, F. and Madonna, C.}, title = {Geometric linear normality for nodal curves on some projective surfaces}, journal = {Bollettino della Unione matematica italiana}, pages = {269--283}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {1}, year = {2001}, zbl = {1036.14019}, mrnumber = {749574}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a8/} }
TY - JOUR AU - Flamini, F. AU - Madonna, C. TI - Geometric linear normality for nodal curves on some projective surfaces JO - Bollettino della Unione matematica italiana PY - 2001 SP - 269 EP - 283 VL - 4B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a8/ LA - en ID - BUMI_2001_8_4B_1_a8 ER -
Flamini, F.; Madonna, C. Geometric linear normality for nodal curves on some projective surfaces. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 269-283. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a8/
[1] Compact Complex Surfaces, Springer, Berlin, 1984. | MR | Zbl
- - ,[2] Holomorphic tensors and vector bundles on projective varities, Math. USSR Isvestija, 13 (1979), 499-555. | Zbl
,[3] Nodal curves on surfaces of general type, Math. Ann., 307 (1997), 41-56. | MR | Zbl
- ,[4] Families of nodal curves on projective surfaces, Ph.D thesis (1999). | Zbl
,[5] Algebraic surfaces and holomorphic vector bundles (UTX), Springer-Verlag, New York, 1998. | MR | Zbl
,[6] New asymptotics in the geometry of equisingular families of curves, Internat. Math. Res. Notices, 13 (1997), 595-611. | MR | Zbl
- - ,[7] Residues and 0-cycles on algebraic varities, Ann. Math., 108 (1978), 461-505. | MR | Zbl
- ,[8] Ample Subvarieties of Algebraic Varieties, Springer, 1970. | MR | Zbl
,[9] Algebraic Geometry (GTM, No. 52), Springer-Verlag, New York-Heidelberg, 1977. | MR | Zbl
,[10] Bogomolov's theorem $c_{1}^{2} \leq 4 c_{2}$, Proc. Internat. Symposium on Alg. Geom., Kyoto (1977), 633-643. | Zbl
,[11] Vanishing Theorems on Complex Manifolds, Progress in Mathematics-vol. 56, Boston-Basel-Stuttgart, Birkhäuser, 1985. | MR | Zbl
- ,