On decompositions in generalised Lorentz-Zygmund spaces
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 239-267.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Il lavoro presenta diverse caratterizzazioni degli spazi Lorentz-Zygmund generalizzati (GLZ) $L_{p, q; \mathbf{\alpha}}(R)$, con $p, q \in (0, +\infty]$, $m \in \mathbb{N}$, $\mathbf{\alpha}\in \mathbb{R}^{m}$ e $(R, \mu)$ spazio misurato con misura $\mu(R)$ finita. Dato uno spazio misurato $(R, \mu)$ e $\mathbf{\alpha} \in \mathcal{R}^{m}_{-}$ , otteniamo representazioni equivalenti per la (quasi-) norma dello spazio GLZ $L_{\infty, \infty; \mathbf{\alpha}} (R)$. Inoltre, se $(R, \mu)$ è uno spazio misurato con misura finita e $\mathbf{\alpha} \in \mathcal{R}^{m}_{+}$, viene presentata in termini di decomposizioni una norma equivalente per lo spazio $L_{1, 1; \mathbf{\alpha}}(R)$. Si dimostra che le norme equivalenti considerate per $L_{\infty, \infty; \mathbf{\alpha}}(R)$, con $(R, \mu)$ uno spazio a misura finita, e la norma di decomposizione in $L_{1, 1; \mathbf{\alpha}}(R)$ possono essere utilizzate per ottenere semplici dimostrazioni di alcuni risultati di estrapolazione concernenti questi spazi.
@article{BUMI_2001_8_4B_1_a7,
     author = {Neves, J. S.},
     title = {On decompositions in generalised {Lorentz-Zygmund} spaces},
     journal = {Bollettino della Unione matematica italiana},
     pages = {239--267},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1178.46029},
     mrnumber = {450957},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a7/}
}
TY  - JOUR
AU  - Neves, J. S.
TI  - On decompositions in generalised Lorentz-Zygmund spaces
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 239
EP  - 267
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a7/
LA  - en
ID  - BUMI_2001_8_4B_1_a7
ER  - 
%0 Journal Article
%A Neves, J. S.
%T On decompositions in generalised Lorentz-Zygmund spaces
%J Bollettino della Unione matematica italiana
%D 2001
%P 239-267
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a7/
%G en
%F BUMI_2001_8_4B_1_a7
Neves, J. S. On decompositions in generalised Lorentz-Zygmund spaces. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 239-267. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a7/

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. | MR | Zbl

[2] C. Bennett-K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 1-72. | MR | Zbl

[3] C. Bennett-R. Sharpley, Interpolation of Operators, volume 129 of Pure and Applied Mathematics, Academic Press, New York, 1988. | MR | Zbl

[4] D. E. Edmunds-P. Gurka-B. Opic, Double exponential integrability of convolution operators in generalised Lorentz-Zygmund spaces, Indiana Univ. Math. J., 44 (1995), 19-43. | MR | Zbl

[5] D. E. Edmunds-P. Gurka-B. Opic, On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 146 (1997), 116-150. | MR | Zbl

[6] D. E. Edmunds-P. Gurka-B. Opic, Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 126 (8) (1998), 2417-2425. | MR | Zbl

[7] D. E. Edmunds-M. Krbec, On Decomposition in Exponential Orlicz Spaces, Math. Nachr., 213 (2000), 77-88. | MR | Zbl

[8] D. E. Edmunds-H. Triebel, Function Spaces, Entropy Numbers and Differential Operators, volume 120 of Cambridge Tracts in Mathematics, Cambridge University Press, 1996. | MR | Zbl

[9] A. Fiorenza-M. Krbec, On decompositions in $L(\log L)^{\alpha}$, Preprint n. 129, Academy of Sciences of the Czech Republic, 1998.

[10] P. Gurka-B. Opic, Global limiting embeddings of logarithmic Bessel potential spaces, Math. Inequal. Appl., 1 (1998) 565-584. | MR | Zbl

[11] B. Jawerth-M. Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc., 89 (440) (1991). | MR | Zbl

[12] A. Kufner-O. John-S. Fučík, Function Spaces, Noordhoff International Publishing, Leyden, Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1977. | MR | Zbl

[13] G. G. Lorentz, Some new functional spaces, Ann. Math., 1 (1951), 411-429. | MR | Zbl

[14] M. Milman, Extrapolation and optimal decomposition, volume 1580 of Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, 1994. | MR | Zbl

[15] W. Rudin, Real and Complex Analysis, Mcgraw-Hill Book Co., Singapore, 3rd edition, 1986. | Zbl

[16] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. | MR | Zbl

[17] A. Torchinsky, Real Variable Methods in Harmonic Analysis, volume 123 of Pure and Applied Mathematics, Academic Press, San Diego, 1986. | MR | Zbl

[18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, volume 18 of North-Holland Mathematical Library. VEB Deutscher Verlag der Wissenschaften, Berlin 1978; North-Holland Publishing Co., 1978. | Zbl

[19] H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. (3), 66 (3) (1993), 589-618. | MR | Zbl

[20] S. Yano, Notes on Fourier analysis (XXIX): An Extrapolation Theorem, J. Math. Soc. Japan, 3 (1951). | fulltext mini-dml | MR | Zbl

[21] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989. | MR | Zbl

[22] A. Zygmund, Trigonometric Series, volume II, Cambridge University Press, Cambridge, 2nd edition, 1959. | MR | Zbl