Soluzioni di tipo barriera
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 131-142.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present the general theory of barrier solutions in the sense of De Giorgi, and we consider different applications to ordinary and partial differential equations. We discuss, in particular, the case of second order geometric evolutions, where the barrier solutions turn out to be equivalent to the well-known viscosity solutions.
@article{BUMI_2001_8_4B_1_a2,
     author = {Novaga, Matteo},
     title = {Soluzioni di tipo barriera},
     journal = {Bollettino della Unione matematica italiana},
     pages = {131--142},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1072.35088},
     mrnumber = {1757696},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/}
}
TY  - JOUR
AU  - Novaga, Matteo
TI  - Soluzioni di tipo barriera
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 131
EP  - 142
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/
LA  - it
ID  - BUMI_2001_8_4B_1_a2
ER  - 
%0 Journal Article
%A Novaga, Matteo
%T Soluzioni di tipo barriera
%J Bollettino della Unione matematica italiana
%D 2001
%P 131-142
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/
%G it
%F BUMI_2001_8_4B_1_a2
Novaga, Matteo. Soluzioni di tipo barriera. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/

[1] L. Ambrosio, Lecture Notes on Geometric Evolution Problems, Distance Function and Viscosity Solutions, in Proc. of the School on Calculus of Variation, Pisa 1996, Springer-Verlag, Berlin, 1999. | MR | Zbl

[2] G. Bellettini-M. Novaga, Minimal barriers for geometric evolutions, J. Differential Eqs., 139 (1997), 76-103. | MR | Zbl

[3] G. Bellettini-M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Sc. Norm. Sup. Pisa, XXVI (1998), 97-131. | fulltext mini-dml | MR | Zbl

[4] G. Bellettini-M. Novaga, Some aspects of De Giorgi's barriers for geometric evolutions, in Proc. of the School on Calculus of Variation, Pisa 1996, Springer-Verlag, Berlin, 1999. | MR | Zbl

[5] G. Bellettini-M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat., 19 (1995), 43-67. | MR | Zbl

[6] Y.-G. Chen-Y. Giga-S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl

[7] M. G. Crandall-H. Ishii-P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67. | fulltext mini-dml | MR | Zbl

[8] M. G. Crandall-P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. AMS, 277 (1983), 1-43. | MR | Zbl

[9] E. De Giorgi, Barriers, boundaries, motion of manifolds, Conference held at Department of Mathematics of Pavia, March 18, 1994.

[10] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, volume 69 of Research Notes in Math. Pitman, Boston, 1982. | MR | Zbl