Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_1_a2, author = {Novaga, Matteo}, title = {Soluzioni di tipo barriera}, journal = {Bollettino della Unione matematica italiana}, pages = {131--142}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {1}, year = {2001}, zbl = {1072.35088}, mrnumber = {1757696}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/} }
Novaga, Matteo. Soluzioni di tipo barriera. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a2/
[1] Lecture Notes on Geometric Evolution Problems, Distance Function and Viscosity Solutions, in Proc. of the School on Calculus of Variation, Pisa 1996, Springer-Verlag, Berlin, 1999. | MR | Zbl
,[2] Minimal barriers for geometric evolutions, J. Differential Eqs., 139 (1997), 76-103. | MR | Zbl
- ,[3] Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Sc. Norm. Sup. Pisa, XXVI (1998), 97-131. | fulltext mini-dml | MR | Zbl
- ,[4] Some aspects of De Giorgi's barriers for geometric evolutions, in Proc. of the School on Calculus of Variation, Pisa 1996, Springer-Verlag, Berlin, 1999. | MR | Zbl
- ,[5] Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat., 19 (1995), 43-67. | MR | Zbl
- ,[6] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl
- - ,[7] User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67. | fulltext mini-dml | MR | Zbl
- - ,[8] Viscosity solutions of Hamilton-Jacobi equations, Trans. AMS, 277 (1983), 1-43. | MR | Zbl
- ,[9] Barriers, boundaries, motion of manifolds, Conference held at Department of Mathematics of Pavia, March 18, 1994.
,[10] Generalized Solutions of Hamilton-Jacobi Equations, volume 69 of Research Notes in Math. Pitman, Boston, 1982. | MR | Zbl
,