Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2001_8_4B_1_a0, author = {Sinestrari, Carlo}, title = {Formazione di singolarit\`a nel moto per curvatura media}, journal = {Bollettino della Unione matematica italiana}, pages = {107--119}, publisher = {mathdoc}, volume = {Ser. 8, 4B}, number = {1}, year = {2001}, zbl = {1177.53062}, mrnumber = {845704}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/} }
Sinestrari, Carlo. Formazione di singolarità nel moto per curvatura media. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/
[1] The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23 (1986), 175-196. | fulltext mini-dml | MR | Zbl
- ,[2] Mean curvature flow through singularities for surfaces of rotation, J. Geom. Analysis, 5 (1995), 293-358. | MR | Zbl
- - ,[3] Geometric evolution problems, distance function and viscosity solutions, in «Calculus of variations and partial differential equations (Pisa, 1996)» (G. Buttazzo, A. Marino, M.K.V. Murthy eds.) Springer. Berlin, (2000). | MR | Zbl
,[4] Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom., 39 (1994), 407-431. | fulltext mini-dml | MR | Zbl
,[5] On the formation of singularities in the curve shortening flow, J. Differential Geom., 33 (1991), 601-633. | fulltext mini-dml | MR | Zbl
,[6] Some recent results on mean curvature flow, in «Recent advances in partial differential equations (El Escorial, 1992)», RAM Res. Appl. Math., 30, Masson, Paris, 1994. | MR | Zbl
,[7] Asymptotic shape of cusp singularities in curve shortening, Duke Math. J., 77, no. 1 (1995), 71-110. | fulltext mini-dml | MR | Zbl
- ,[8] Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482 (1997), 15-66. | MR | Zbl
- ,[9] The motion of a surface by its mean curvature, Princeton University Press, Princeton (1978). | MR | Zbl
,[10] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl
- - ,[11] Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR | Zbl
- ,[12] Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681. | fulltext mini-dml | MR | Zbl
- ,[13] Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc., 330 (1992), 321-332. | MR | Zbl
- ,[14] The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96. | fulltext mini-dml | MR | Zbl
- ,[15] The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314. | fulltext mini-dml | MR | Zbl
,[16] A short note on the evolution of a surface by its mean curvature, Duke Math. J., 58 (1989), 555-558. | fulltext mini-dml | MR | Zbl
,[17] Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306. | fulltext mini-dml | MR | Zbl
,[18] Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), 215-226. | fulltext mini-dml | MR | Zbl
,[19] Four-manifolds with positive isotropic curvature, Comm. Anal. Geom., 5 (1997), 1-92. | MR | Zbl
,[20] Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266. | fulltext mini-dml | MR | Zbl
,[21] Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285-299. | fulltext mini-dml | MR | Zbl
,[22] Local and global behaviour of hypersurfaces moving by mean curvature, Proceedings of Symposia in Pure Mathematics, 54 (1993), 175-191. | MR | Zbl
,[23] Evolution of hypersurfaces by their curvature in Riemannian manifolds. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. (1998), 349-360. | MR | Zbl
,[24] The inverse mean curvature flow and the Riemannian Penrose inequality, in corso di stampa su J. Differential Geom. | fulltext mini-dml | MR | Zbl
- ,[25] Mean curvature flow singularities for mean convex surfaces, Calc. Variations, 8 (1999), 1-14. | MR | Zbl
- ,[26] Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70. | MR | Zbl
- ,[27] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994). | MR | Zbl
,[28] Front propagation: theory and applications in: «Viscosity solutions and applications» (I. Capuzzo Dolcetta and P.L. Lions, Eds.), Springer-Verlag, Berlin (1997), 186-242. | MR | Zbl
,[29] The nature of singularities in mean curvature flow of mean-convex sets, preprint (1998). | MR | Zbl