Formazione di singolarità nel moto per curvatura media
Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 107-119.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the formation of singularities for hypersurfaces evolving by mean curvature. After recalling the basic properties of the flow and the classical results about curves and convex surfaces, we give account of some recent developments of the theory for the case of surfaces with positive mean curvature. We show that for such surfaces we can obtain a–priori estimates on the principal curvatures which enable us to classify the singular profiles by the use of rescaling techniques.
@article{BUMI_2001_8_4B_1_a0,
     author = {Sinestrari, Carlo},
     title = {Formazione di singolarit\`a nel moto per curvatura media},
     journal = {Bollettino della Unione matematica italiana},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {Ser. 8, 4B},
     number = {1},
     year = {2001},
     zbl = {1177.53062},
     mrnumber = {845704},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/}
}
TY  - JOUR
AU  - Sinestrari, Carlo
TI  - Formazione di singolarità nel moto per curvatura media
JO  - Bollettino della Unione matematica italiana
PY  - 2001
SP  - 107
EP  - 119
VL  - 4B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/
LA  - it
ID  - BUMI_2001_8_4B_1_a0
ER  - 
%0 Journal Article
%A Sinestrari, Carlo
%T Formazione di singolarità nel moto per curvatura media
%J Bollettino della Unione matematica italiana
%D 2001
%P 107-119
%V 4B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/
%G it
%F BUMI_2001_8_4B_1_a0
Sinestrari, Carlo. Formazione di singolarità nel moto per curvatura media. Bollettino della Unione matematica italiana, Série 8, 4B (2001) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/BUMI_2001_8_4B_1_a0/

[1] U. Abresch-J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23 (1986), 175-196. | fulltext mini-dml | MR | Zbl

[2] S. Altschuler-S. B. Angenent-Y. Giga, Mean curvature flow through singularities for surfaces of rotation, J. Geom. Analysis, 5 (1995), 293-358. | MR | Zbl

[3] L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in «Calculus of variations and partial differential equations (Pisa, 1996)» (G. Buttazzo, A. Marino, M.K.V. Murthy eds.) Springer. Berlin, (2000). | MR | Zbl

[4] B. Andrews, Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom., 39 (1994), 407-431. | fulltext mini-dml | MR | Zbl

[5] S. B. Angenent, On the formation of singularities in the curve shortening flow, J. Differential Geom., 33 (1991), 601-633. | fulltext mini-dml | MR | Zbl

[6] S. B. Angenent, Some recent results on mean curvature flow, in «Recent advances in partial differential equations (El Escorial, 1992)», RAM Res. Appl. Math., 30, Masson, Paris, 1994. | MR | Zbl

[7] S. B. Angenent-J. J. L. Velazquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. J., 77, no. 1 (1995), 71-110. | fulltext mini-dml | MR | Zbl

[8] S. B. Angenent-J. J. L. Velazquez, Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482 (1997), 15-66. | MR | Zbl

[9] K. A. Brakke, The motion of a surface by its mean curvature, Princeton University Press, Princeton (1978). | MR | Zbl

[10] Y. G. Chen-Y. Giga-S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl

[11] J. Eells-J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR | Zbl

[12] L. C. Evans-J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681. | fulltext mini-dml | MR | Zbl

[13] L. C. Evans-J. Spruck, Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc., 330 (1992), 321-332. | MR | Zbl

[14] M. Gage-R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96. | fulltext mini-dml | MR | Zbl

[15] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314. | fulltext mini-dml | MR | Zbl

[16] M. A. Grayson, A short note on the evolution of a surface by its mean curvature, Duke Math. J., 58 (1989), 555-558. | fulltext mini-dml | MR | Zbl

[17] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306. | fulltext mini-dml | MR | Zbl

[18] R. S. Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), 215-226. | fulltext mini-dml | MR | Zbl

[19] R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom., 5 (1997), 1-92. | MR | Zbl

[20] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266. | fulltext mini-dml | MR | Zbl

[21] G. Huisken, Asymptotic behaviour for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285-299. | fulltext mini-dml | MR | Zbl

[22] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Proceedings of Symposia in Pure Mathematics, 54 (1993), 175-191. | MR | Zbl

[23] G. Huisken, Evolution of hypersurfaces by their curvature in Riemannian manifolds. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. (1998), 349-360. | MR | Zbl

[24] G. Huisken-T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, in corso di stampa su J. Differential Geom. | fulltext mini-dml | MR | Zbl

[25] G. Huisken-C. Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Variations, 8 (1999), 1-14. | MR | Zbl

[26] G. Huisken-C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183 (1999), 45-70. | MR | Zbl

[27] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108 (1994). | MR | Zbl

[28] P. E. Souganidis, Front propagation: theory and applications in: «Viscosity solutions and applications» (I. Capuzzo Dolcetta and P.L. Lions, Eds.), Springer-Verlag, Berlin (1997), 186-242. | MR | Zbl

[29] B. White The nature of singularities in mean curvature flow of mean-convex sets, preprint (1998). | MR | Zbl