Sistemi iperbolici di leggi di conservazione
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 635-656.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This survey paper provides a brief introduction to the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After reviewing some basic concepts, we describe the fundamental theorem of Glimm on the global existence of BV solutions. We then outline the more recent results on uniqueness and stability of entropy weak solutions. Finally, some major open problems and research directions are discussed in the last section.
@article{BUMI_2000_8_3B_3_a3,
     author = {Bressan, Alberto},
     title = {Sistemi iperbolici di leggi di conservazione},
     journal = {Bollettino della Unione matematica italiana},
     pages = {635--656},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {0977.35087},
     mrnumber = {1492096},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a3/}
}
TY  - JOUR
AU  - Bressan, Alberto
TI  - Sistemi iperbolici di leggi di conservazione
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 635
EP  - 656
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a3/
LA  - it
ID  - BUMI_2000_8_3B_3_a3
ER  - 
%0 Journal Article
%A Bressan, Alberto
%T Sistemi iperbolici di leggi di conservazione
%J Bollettino della Unione matematica italiana
%D 2000
%P 635-656
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a3/
%G it
%F BUMI_2000_8_3B_3_a3
Bressan, Alberto. Sistemi iperbolici di leggi di conservazione. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 635-656. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a3/

[1] P. Baiti-H. K. Jenssen, On the front tracking algorithm, J. Math. Anal. Appl., 217 (1998), 395-404. | MR | Zbl

[2] S. Bianchini-A. Bressan, BV estimates for a class of viscous hyperbolic systems, Indiana Univ. Math. J., in corso di stampa.

[3] A. Bressan, Contractive metrics for nonlinear hyperbolic systems, Indiana Univ. Math. J., 37 (1988), 409-421. | MR | Zbl

[4] A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432. | MR | Zbl

[5] A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230. | MR | Zbl

[6] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. | MR | Zbl

[7] A. Bressan-R. M. Colombo, The semigroup generated by $2 \times 2$ conservation laws, Arch. Rational Mech. Anal., 133 (1995), 1-75. | MR | Zbl

[8] A. Bressan-G. Crasta-B. Piccoli, Well posedness of the Cauchy problem for $n \times n$ systems of conservation laws, Amer. Math. Soc. Memoir, 694 (2000). | MR | Zbl

[9] A. Bressan-P. Goatin, Oleinik type estimates and uniqueness for $n \times n$ conservation laws, J. Differential Equations, 156 (1999), 26-49. | MR | Zbl

[10] A. Bressan-P. Lefloch, Uniqueness of weak solutions to hyperbolic systems of conservation laws, Arch. Rational Mech. Anal., 140 (1997), 301-317. | MR | Zbl

[11] A. Bressan-M. Lewicka, A uniqueness condition for hyperbolic systems of conservation laws, Discr. Cont. Dynam. Syst., in corso di stampa. | Zbl

[12] A. Bressan, T. P. Liu - T. Yang, $L^1$ stability estimates for $n \times n$ conservation laws, Arch. Rational Mech. Anal., 149 (1999), 1-22. | MR | Zbl

[13] M. Crandall, The semigroup approach to first-order quasilinear equations in several space variables, Israel J. Math., 12 (1972), 108-132. | MR | Zbl

[14] C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. | MR | Zbl

[15] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 1999. | Zbl

[16] R. Diperna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212. | MR | Zbl

[17] R. Diperna, Entropy and the uniqueness of solutions to hyperbolic conservation laws, in Nonlinear Evolution Equations (M. Crandall Ed.), Academic Press, New York (1978), 1-16. | MR | Zbl

[18] R. Diperna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188. | MR | Zbl

[19] R. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82 (1983), 27-70. | MR | Zbl

[20] L. C. Evans-R. F. Gariepy, Measure Theory and Fine Properties of Functions, C.R.C. Press, 1992. | MR | Zbl

[21] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. | MR | Zbl

[22] M. Herrero-J. Velazquez, Generic behavior of one-dimensional blow-up patterns, Annali Scuola Norm. Sup. Pisa, Serie IV, 19 (1992), 381-450. | fulltext mini-dml | MR | Zbl

[23] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math. Anal., in corso di stampa. | MR | Zbl

[24] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27 (1974), 377-405. | MR | Zbl

[25] S. Kruzhkov, First-order quasilinear equations with several space variables, Math. USSR Sb., 10 (1970), 217-273. | Zbl

[26] P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. | MR | Zbl

[27] R. Leveque, Numerical Methods for Conservation Laws, Lecture Notes in Math., Birkhäuser, 1990. | MR | Zbl

[28] T. P. Liu, Uniqueness of weak solutions of the Cauchy problem for general $2 \times 2$ conservation laws, J. Differential Equations, 20 (1976), 369-388. | MR | Zbl

[29] T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148. | fulltext mini-dml | MR | Zbl

[30] T. P. Liu-T. Yang, $L^1$ stability of conservation laws with coinciding Hugoniot and characteristic curves, Indiana Univ. Math. J., 48 (1999), 237-247. | MR | Zbl

[31] T. P. Liu-T. Yang, $L^1$ stability for $2 \times 2$ systems of hyperbolic conservation laws, J. Amer. Math. Soc., 12 (1999), 729-774. | MR | Zbl

[32] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. | MR | Zbl

[33] R. Natalini, Recent results on hyperbolic relaxation problems, in Analysis of Systems of Conservation Laws (H. Freisthüler Ed.), Chapman & Hall/CRC, 1998, pp. 128-198. | Zbl

[34] O. Oleinik, On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Usp. Mat. Nauk., 12, (1957), 169-176. | MR

[35] J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm. Math. Phys., 106 (1986), 481-484. | fulltext mini-dml | MR | Zbl

[36] N. H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139. | MR | Zbl

[37] D. Serre, Systémes de Lois de Conservation, Diderot Editeur, 1996.

[38] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983. | MR | Zbl

[39] A. I. Volpert, The spaces BV and quasilinear equations, Math. USSR Sbornik, 2 (1967), 225-267. | MR | Zbl