A geometric description of Hazama's exceptional classes
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 727-737.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sia $X$ una varietà abeliana complessa di tipo Mumford. In queste note daremo una descrizione esplicita delle classi eccezionali in $B^{2}(X \times X)$ trovate da Hazama in [Ha] e le descriveremo geometricamente usando la grassmaniana delle rette di $\mathbb{P}^{7}$.
@article{BUMI_2000_8_3B_3_a10,
     author = {Galluzzi, Federica},
     title = {A geometric description of {Hazama's} exceptional classes},
     journal = {Bollettino della Unione matematica italiana},
     pages = {727--737},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {3},
     year = {2000},
     zbl = {1004.14002},
     mrnumber = {654325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a10/}
}
TY  - JOUR
AU  - Galluzzi, Federica
TI  - A geometric description of Hazama's exceptional classes
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 727
EP  - 737
VL  - 3B
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a10/
LA  - en
ID  - BUMI_2000_8_3B_3_a10
ER  - 
%0 Journal Article
%A Galluzzi, Federica
%T A geometric description of Hazama's exceptional classes
%J Bollettino della Unione matematica italiana
%D 2000
%P 727-737
%V 3B
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a10/
%G en
%F BUMI_2000_8_3B_3_a10
Galluzzi, Federica. A geometric description of Hazama's exceptional classes. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 3, pp. 727-737. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_3_a10/

[DMOS] P. Deligne-J. S. Milne-A. Ogus-K. Shih, Hodge Cycles, Motives and Shimura Varieties, LNM 900, Springer-Verlag (1982). | MR

[F-H] W. Fulton-J. Harris, Representation Theory, GTM 129, Springer-Verlag (1991). | MR

[Haz] F. Hazama, Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 487-520. | MR

[Ga] F. Galluzzi, Hodge structure of an abelian fourfold of Mumford-type, preprint.

[G] B. B. Gordon, A survey of the Hodge conjecture for Abelian Varieties, Duke preprint alg-geom 9709030, to appear in the second edition of «A survey of the Hodge conjecture» by James D. Lewis.

[Mu1] D. Mumford, Families of abelian varieties, in Algebraic Groups and Discontinuous Subgroup, Proc. Sympos.Pure Math., 9, Amer. Math. Soc., Providence, R.I. (1966), 347-351. | MR

[Mu2] D. Mumford, A note of Shimura's Paper «Discontinuous Groups and Abelian Varieties», Math. Ann., 181, (1969), 345-351. | MR

[vG] B. Van Geemen, An introduction to the Hodge Conjecture for abelian varieties, Algebraic cycles and Hodge Theory, Torino 1993 Lect. Notes in Math. 1594, Springer, Berlin, etc., (1994), 233-252. | MR