Transizioni di fase ed isteresi
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 31-77.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.
@article{BUMI_2000_8_3B_1_a2,
     author = {Visintin, Augusto},
     title = {Transizioni di fase ed isteresi},
     journal = {Bollettino della Unione matematica italiana},
     pages = {31--77},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {1},
     year = {2000},
     zbl = {1064.74139},
     mrnumber = {1411908},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a2/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Transizioni di fase ed isteresi
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 31
EP  - 77
VL  - 3B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a2/
LA  - it
ID  - BUMI_2000_8_3B_1_a2
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Transizioni di fase ed isteresi
%J Bollettino della Unione matematica italiana
%D 2000
%P 31-77
%V 3B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a2/
%G it
%F BUMI_2000_8_3B_1_a2
Visintin, Augusto. Transizioni di fase ed isteresi. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 31-77. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a2/

[1] F. F. Abraham, Homogeneous Nucleation Theory, Academic Press, New York 1974.

[2] J. C. Brice, The Growth of Crystals from Liquids, North-Holland, Amsterdam 1973.

[3] B. Chalmers, Principles of Solidification, Wiley, New York 1964.

[4] J. W. Christian, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London 1975.

[5] R. H. Doremus, Rates of Phase Transformations, Academic Press, Orlando 1985.

[6] M. C. Flemings, Solidification Processing, McGraw-Hill, New York 1973.

[7] W. Kurz-D. J. Fisher, Fundamentals of Solidification, Trans Tech, Aedermannsdorf 1989.

[8] R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford 1975.

[9] V. P. Skripov, Metastable Liquids, Wiley, Chichester 1974.

[10] D. Turnbull, Phase Changes, Solid State Physics, 3 (1956), 225-306.

[11] A. R. Ubbelohde, The Molten State of Matter, Wiley, Chichester 1978.

[12] P. D. Woodruff, The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge 1973.

[13] V. Alexiades-A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC 1993.

[14] M. Brokate-J. Sprekels, Hysteresis and Phase Transitions, Springer, Heidelberg 1996. | MR | Zbl

[15] M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford 1993. | MR | Zbl

[16] A. M. Meirmanov, The Stefan Problem, De Gruyter, Berlin 1992 (Russian edition: Nauka, Novosibirsk 1986). | MR | Zbl

[17] A. Romano, Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore 1993. | MR | Zbl

[18] L. Rubinstein, The Stefan Problem. A.M.S., Providence 1971 (Russian edition: Zvaigzne, Riga 1967). | MR

[19] A. Visintin, Models of phase transitions, Birkhauser, Boston 1996. | MR | Zbl

[20] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park 1984. | MR | Zbl

[21] S. J. Chapman-S. D. Howison-J. R. Ockendon, Macroscopic models for superconductivity, S.I.A.M. Rev., 34 (1992), 529-560. | MR | Zbl

[22] I. I. Danilyuk, On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. | MR | Zbl

[23] A. Fasano, Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario 1987. | MR | Zbl

[24] A. Fasano, Esperienza di collaborazione con industrie su programmi a lungo termine, Boll. Un. Matem. Ital., 7-A (1997), 1-40. | Zbl

[25] A. Fasano, Phase transition with supercooling, Boll. Un. Matem. Ital., (8) (1998), 49-69. | fulltext bdim | fulltext mini-dml | MR | Zbl

[26] E. Magenes, Problemi di Stefan bifase in piu variabili spaziali, Le Matematiche, 36 (1981), 65-108. | MR | Zbl

[27] E. Magenes, Stefan problems with a concentrated capacity, Boll. Un. Matem. Ital., (8) (1998), 71-81. | fulltext bdim | fulltext mini-dml | MR | Zbl

[28] M. Niezgoóldka, Stefan-like problems, In: Free Boundary Problems: Theory and Applications (A. Fasano, M. Primicerio, eds.). Pitman, Boston 1983, pp. 321-347. | MR

[29] O. A. Oleĭnik-M. Primicerio-E. V. Radkevich, Stefan-like problems, Meccanica, 28 (1993), 129-143. | Zbl

[30] M. Primicerio, Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univers. Politecn. Torino, 32 (1973-74), 183-206. | MR | Zbl

[31] M. Primicerio, Problemi di diffusione a frontiera libera, Boll. Un. Matem. Ital., 18-A (1981), 11-68. | Zbl

[32] J.-F. Rodrigues, The variational inequality approach to the one-phase Stefan problem, Acta Applicandae Mathematicae, 8 (1987), 1-35. | MR | Zbl

[33] D. A. Tarzia, A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Progetto Nazionale M.P.I. «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche», Firenze, 1988. | MR | Zbl

[34] C. Verdi, Numerical methods for phase transition problems, Boll. Un. Matem. Ital., (8) (1998), 83-108. | fulltext bdim | fulltext mini-dml | MR | Zbl

[35] A. Visintin, Introduction to the models of phase transitions, Bull. Un. Matem. Ital., I-B (1998), 1-47. | fulltext bdim | fulltext mini-dml | MR | Zbl

[36] D. G. Wilson-A. D. Solomon-J. S. Trent, A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory, 1979.

[37] A. BOSSAVIT-A. DAMLAMIAN-M. FRÉMOND (EDS.), Free Boundary Problems: Theory and Applications, Pitman, Boston 1985.

[38] J. M. CHADAM-H. RASMUSSEN (EDS.), Emerging Applications in Free Boundary Problems, Longman, Harlow 1993. | MR

[39] J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems Involving Solids, Longman, Harlow 1993. | MR

[40] J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow 1993. | MR

[41] J. I. DIAZ-M. A. HERRERO-A. LIÑÁN, J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1995. | MR

[42] A. FASANO-M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston 1983. | MR | Zbl

[43] K.-H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1990. | Zbl

[44] H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston 1990. | MR | Zbl

[45] N. KENMOCHI-M. NIEZGÓDKA-P. STRZELECKI (eds.), Nonlinear Analysis and Applications, Gakkotosho, Tokyo 1996. | MR

[46] E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma 1980.

[47] M. NIEZGÓDKA-P. STRZELECKI (EDS.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1996. | MR | Zbl

[48] J. R. OCKENDON-W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford 1975. | Zbl

[49] D. G. WILSON-A. D. SOLOMON-P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York 1978. | MR | Zbl

[50] I. Athanassopoulos-L. A. Caffarelli-S. Salsa, Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. | MR | Zbl

[51] I. Athanassopoulos-L. A. Caffarelli-S. Salsa, Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). | Zbl

[52] I. Athanassopoulos-L. A. Caffarelli-S. Salsa, Phase transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. | MR | Zbl

[53] C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. | MR | Zbl

[54] C. Baiocchi-A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester 1983. | MR | Zbl

[55] A. E. Berger-H. Brézis-J. W. Rogers, A numerical method for solving the problem $u_{t} - \Delta f(u) = 0$, R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. | fulltext mini-dml | MR | Zbl

[56] A. E. Berger-J. W. Rogers, Some properties of the nonlinear semigroup for the problem $u_{t} - \Delta f(u) = 0$, Nonlinear Analysis, T.M.A., 8 (1984), 909-939. | MR | Zbl

[57] H. Brézis, On some degenerate nonlinear parabolic equations, In: Nonlinear Functional Analysis (F. E. Browder, ed.). Proc. Symp. Pure Math., XVIII A.M.S., Providence 1970, pp. 28-38. | MR | Zbl

[58] L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. | MR | Zbl

[59] L. A. Caffarelli, Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. | MR | Zbl

[60] L. A. Caffarelli-L. C. Evans, Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. | MR | Zbl

[61] L. A. Caffarelli-A. Friedman, Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J., 28 (1979), 53-70. | MR | Zbl

[62] J. R. Cannon-C. D. Hill, On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. | MR | Zbl

[63] A. Damlamian, Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. | Zbl

[64] E. Dibenedetto, Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. | MR | Zbl

[65] E. Dibenedetto, Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. | MR | Zbl

[66] E. Dibenedetto-V. Vespri, On the singular equation $\beta(u)_{t} = \Delta u$, Arch. Rational Mech. Anal., 132 (1995), 247-309. | MR | Zbl

[67] J. D. P. Donnelly, A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. | MR | Zbl

[68] G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. | MR | Zbl

[69] G. Duvaut, The solution of a two-phase Stefan by a variational inequality, In: Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon, W. R. Hodgkins, eds.), Clarendon Press, Oxford 1975, pp. 173-181.

[70] G. W. Evans, A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. | Zbl

[71] A. Fasano-M. Primicerio, General free boundary problems for the heat equation, J. Math. Anal. Appl.: I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. | Zbl

[72] A. Fasano-M. Primicerio, Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. | MR | Zbl

[73] A. Fasano-M. Primicerio, Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. | MR | Zbl

[74] A. Fasano-M. Primicerio, Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. | MR | Zbl

[75] A. Fasano-M. Primicerio, A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. | MR | Zbl

[76] A. Fasano-M. Primicerio, A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci., 5 (1983), 84-96. | MR | Zbl

[77] A. Fasano-M. Primicerio-S. Kamin, Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. | MR | Zbl

[78] M. Frémond, Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, In: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. Oden, ed.). University of Texas, Austin (1974), pp. 341-349. | MR | Zbl

[79] A. Friedman, Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. | Zbl

[80] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs 1964. | MR | Zbl

[81] A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. | MR | Zbl

[82] A. Friedman, One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. | MR | Zbl

[83] A. Friedman, Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. | MR | Zbl

[84] A. Friedman-D. Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. | MR | Zbl

[85] I.G. Götz-B. B. Zaltzman, Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. | MR | Zbl

[86] L. S. Jiang, The two-phase Stefan problem. I, II, Chinese Math., 4 (1963), 686-702; 5 (1964), 36-53. | Zbl

[87] S. Kamenomostskaya, On the Stefan problem, Math. Sbornik, 53 (1961), 489-514 (Russian). | Zbl

[88] D. Kinderlehrer-L. Nirenberg, Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. | fulltext mini-dml | MR | Zbl

[89] D. Kinderlehrer-L. Nirenberg, The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. | MR | Zbl

[90] I. I. Kolodner, Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. | Zbl

[91] G. Lamé, B.P. Clayperon, Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.

[92] S. Luckhaus, Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. | MR | Zbl

[93] A. M. Meirmanov, On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. | Zbl

[94] A. M. Meirmanov, On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), 157-178. | Zbl

[95] A. M. Meirmanov, An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. | MR | Zbl

[96] O. A. Oleĭnik, A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. | MR | Zbl

[97] M. Primicerio, Mushy regions in phase-change problems, In: Applied Functional Analysis (R. Gorenflo, K.-H. Hoffmann, eds.). Lang, Frankfurt (1983), pp. 251-269. | MR | Zbl

[98] J.-F. RODRIGUES (ed.), Mathematical Models for Phase Change Problems, Birkhäuser, Basel 1989. | MR | Zbl

[99] L. Rubinstein, On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. | MR | Zbl

[100] L. Rubinstein-A. Fasano-M. Primicerio, Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. | MR | Zbl

[101] D. Schaeffer, A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, 20 (1976), 266-269. | MR | Zbl

[102] G. Sestini, Esistenza di una soluzione in problemi analoghi a quello di Stefan, Rivista Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. | Zbl

[103] R. E. Showalter, Mathematical formulation of the Stefan problem, Int. J. Eng. Sc., 20 (1982), 909-912. | MR | Zbl

[104] J. Stefan, Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. | Jbk 21.1197.01

[105] A. Visintin, Two-scale Stefan problem with surface tension, In: Nonlinear Analysis and Applications (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) (Gakkotosho, Tokyo 1996), 405-424. | MR | Zbl

[106] A. Visintin, Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. | MR | Zbl

[107] A. Visintin, Nucleation and mean curvature flow, Communications in P.D.E.s, 23 (1998), 17-35. | MR | Zbl

[108] W. P. Ziemer, Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. | MR | Zbl

[109] G. Bertotti, Hysteresis in Magnetism, Academic Press, Boston 1998.

[110] M. Brokate, Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, Lang, Frankfurt am Main (1987). English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991), 53 (1992). | MR | Zbl

[111] M. Brokate-J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin 1996 | MR | Zbl

[112] E. Della Torre, Magnetic Hysteresis, IEEE Press, 1999.

[113] A. Iványi, Hysteresis Models in Electromagnetic Computation, Akademḿiai Kiado, Budapest, 1997.

[114] M. A. Krasnosel'Skĭ-A. V. Pokrovskiĭ, Systems with Hysteresis, Springer, Berlin 1989 (Russian ed. Nauka, Moscow 1983). | MR | Zbl

[115] P. Krejčí, Convexity, Hysteresis and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo 1997. | Zbl

[116] I. D. Mayergoyz, Mathematical Models of Hysteresis, Springer, New York 1991. | MR | Zbl

[117] A. Visintin, Differential Models of Hysteresis, Springer, Berlin 1994. | MR | Zbl

[118] M. Brokate, Elastoplastic constitutive laws of nonlinear kinematic hardening type, In: Functional analysis with current applications in science, technology and industry (M. Brokate, A. H. Siddiqi, eds.), Longman, Harlow (1998), pp. 238-272. | MR | Zbl

[119] Y. Huo-I. Mueller, Non-equilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodyn., 5 (1993), 163-204. | Zbl

[120] M. A. Krasnosel'Skiĭ, Equations with non-linearities of hysteresis type, VII Int. Konf. Nichtlin. Schwing., Berlin 1975; Abh. Akad. Wiss. DDR, 3 (1977), 437-458 (Russian). | Zbl

[121] P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, In: Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč, eds.) Research Notes in Mathematics, Chapman & Hall/CRC, London (1999), pp. 47-110. | Zbl

[122] I. Mueller, Six lectures on shape memory, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 125-161. | MR | Zbl

[123] J. W. Macki-P. Nistri-P. Zecca, Mathematical models for hysteresis, S.I.A.M. Review, 35 (1993), 94-123. | MR | Zbl

[124] A. Visintin, Mathematical models of hysteresis, In: Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), Birkhäuser, Basel 1988, pp. 295-326. | MR | Zbl

[125] A. Visintin, Mathematical models of hysteresis, In: Modelling and optimization of distributed parameter systems (K. Malanowski et al., ed.), Chapman and Hall, (1996), pp. 71-80 | MR | Zbl

[126] A. Visintin, Mathematical models of hysteresis. A survey, In: Nonlinear Partial Differential Equations. College de France. Vol. XIII (D. Cioranescu, J. L. Lions, eds.), Longman, Harlow (1998), pp. 327-338. | MR | Zbl

[127] A. Visintin, Six talks on hysteresis, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 207-236. | MR | Zbl

[128] M. Brokate-K. Dressler-P. Krejčí-T. I. Seidman-L. Tavernini-A. Visintin, Contributions to the session on Problems in Hysteresis, In: Nonlinear Analysis, Proceedings of the First World Congress of Nonlinear Analysts (ed. V. Laksmikantham), De Gruyter, Berlin (1996), 797-806. | Zbl

[129] M. Brokate-N. Kenmochi-I. Müller-J. F. Rodrigues-C. Verdi (A. VISINTIN, ed.), Phase Transitions and Hysteresis, Lecture Notes in Mathematics, vol. 1584. Springer, Berlin 1994. | MR

[130] A. VISINTIN (ed.), Models of Hysteresis, Proceedings of a meeting held in Trento in 1991. Longman, Harlow 1993. | MR | Zbl

[131] A. Bossavit-C. Emson-I. D. Mayergoyz, Géométrie différentielle, éléments finis, modèles d'hystérésis, Eyrolles, Paris 1991.

[132] R. Bouc, Solution périodique de l'équation de la ferrorésonance avec hystérésis, C.R. Acad. Sci. Paris, Serie A, 263 (1966), 497-499. | MR | Zbl

[133] R. Bouc, Modèle mathématique d'hystérésis et application aux systèmes à un degré de liberté, These, Marseille 1969. | Zbl

[134] M. Brokate, Optimale Steuerung von gewohnlichen Differentialgleichungen mit Nichtlinearitaten vom Hysteresis-Typ, Habilitations Schrift. Lang, Frankfurt am Main 1987. English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991) and 53 (1992). | MR | Zbl

[135] M. Brokate, On a characterization of the Preisach model for hysteresis, Rend. Sem. Mat. Padova, 83 (1990), 153-163. | fulltext mini-dml | MR | Zbl

[136] V. Chernorutskii.-D. Rachinskii: On uniqueness of an initial-problem for ODE with hysteresis, NoDEA, 4 (1997), 391-399. | MR | Zbl

[137] A. Damlamian-A. Visintin, Une géneralisation vectorielle du modèle de Preisach pour l'hystérésis, C. R. Acad. Sci. Paris, Serie I, 297 (1983), 437-440. | MR | Zbl

[138] P. Duhem, The evolution of mechanics, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L'évolution de la méchanique. Joanin, Paris 1903. | Zbl

[139] M. Hilpert, On uniqueness for evolution problems with hysteresis, In: Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.) (Birkhauser, Basel 1989), 377-388. | MR | Zbl

[140] K.-H. Hoffmann-J. Sprekels-A. Visintin, Identification of hysteresis loops, J. Comp. Phys., 78 (1988), 215-230. | MR | Zbl

[141] A.Y. Ishlinskiĭ, Some applications of statistical methods to describing deformations of bodies, Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9 (1944), 580-590 (Russian).

[142] E. Madelung, Uber Magnetisierung durch schnellverlaufende Strome und die, Wirkungsweise des Rutherford-Marconischen Magnetdetektors. Ann. Phys., 17 (1905), 861-890.

[143] M.A. Krasnosel’Skiĭ-B. M. Darinskiĭ-I. V. Emelin-P. P. Zabreĭko, E. A. Lifsic - A. V. Pokrovskiĭ, Hysterant operator, Soviet Math. Soviet Dokl., 11 (1970), 29-33. | Zbl

[144] I. D. Mayergoyz, Mathematical models of hysteresis, Phys. Rev. Letters, 56 (1986), 1518-1521.

[145] I. D. Mayergoyz, Mathematical models of hysteresis, I.E.E.E. Trans. Magn., 22 (1986), 603-608.

[146] Z. Mróz, On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15 (1967), 163-175.

[147] I. Müller, A model for a body with shape-memory, Arch. Rational Mech. Anal., 70 (1979), 61-77. | MR

[148] I. Müller, On the size of hysteresis in pseudoelasticity, Continuum Mech. Thermodyn., 1 (1989), 125-142. | MR

[149] L. Néel, Theorie des lois d’aimantation de Lord Rayleigh. I. Les déplacements d’une paroi isolée; II. Multiples domaines et champ coercive, Cahiers de Physique, 12 (1942), 1-20; 13 (1943), 18-30.

[150] L. Prandtl: Spannungverteilung in plastischen Körpern, In: Proc. 1st Intern. Congr. Appl. Mech. Delft (1924), pp. 43-54.

[151] L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 8 (1928), 85-106. | Jbk 54.0847.04

[152] F. Preisach, Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302.

[153] Rayleigh, On the behaviour of iron and steel under the operation of feeble magnetic forces, Phil. Mag., 23 (1887), 225-248. | Jbk 19.1131.04

[154] C. Verdi-A. Visintin, Numerical approximation of hysteresis problems, I.M.A. J. Numer. Anal., 5 (1985), 447-463. | MR | Zbl

[155] C. Verdi-A. Visintin, Numerical approximation of the Preisach model for hysteresis, Math. Model. and Numer. Anal., 23 (1989), 335-356. | MR | Zbl

[156] A. Visintin, A model for hysteresis of distributed systems, Ann. Mat. Pura Appl., 131 (1982), 203-231. | MR | Zbl

[157] A. Visintin, On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A., 9 (1984), 977-996. | MR | Zbl

[158] A. Visintin, Hysteresis and semigroups, In: Models of hysteresis (A. Visintin, ed.), Longman, Harlow (1993), pp. 192-206. | MR | Zbl

[159] A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365-369.

[160] P. Weiss-J. De Freudenreich, Etude de l’aimantation initiale en fonction de la température (suite et fin), Arch. Sci. Phys. Nat., (Genève), 42 (1916), 449-470.

[161] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden 1976. | MR | Zbl

[162] H. Bénilan, Equations d’Évolution dans un Espace de Banach Quelconque et Applications, Thèse, Orsay 1972.

[163] M. Bertsch-P. Podio-Guidugli-V. Valente, On the dynamics of deformable ferromagnets 1. Global weak solutions for soft ferromagnets at rest, Preprint, 1999. | Zbl

[164] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam 1973. | MR | Zbl

[165] W. F. Jr. Brown, Micromagnetics, Krieger, Huntington 1978.

[166] H. S. Carslaw-J. C. Jaeger, Conduction of heat in solids, Clarendon Press and Oxford University Press, New York, 1988. | MR | Zbl

[167] G. Duvaut-J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris 1972. | MR | Zbl

[168] L. Landau-E. Lifshitz, On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Physik. Z. Sowietunion, 8 (1935), 153-169.

[169] L. Landau-E. Lifshitz, Statistical physics, Pergamon Press, Oxford 1969. | MR | Zbl

[170] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris 1969. | MR | Zbl

[171] A. Visintin, On Landau-Lifshitz equations in ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84. | MR | Zbl

[172] P. Weiss, L’hypothèse du champ moléculaire et la proprièté ferromagnétique, J. Physique, 6 (1907), 661-690.