On the canonical ideal of a set of points
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 221-261.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Dato un insieme $X$ di $s$ punti nello spazio proiettivo, si costruisce un esplicito ideale canonico $\mathcal{I}$ nel suo anello di coordinate $R$. Si descrivono le componenti omogenee di $\mathcal{I}$ e la struttura della mappa di moltiplicazione $R_{\sigma}\otimes\mathcal{I}_{\sigma+1} \to \mathcal{I}_{2\sigma+1}$, dove $\sigma=\max\{i \mid H_{X}(i) s\}$. Tra le applicazioni ci sono varie caratterizzazioni di insiemi di punti coomologicamente uniformi, disuguaglianze nelle loro funzioni di Hilbert, il calcolo del primo modulo delle sizigie di $\mathcal{I}$ in casi particolari, una generalizzazione della «trasformata di Gale» a trasformate canoniche di grado superiore e infine alcune osservazioni sui codici MDS.
@article{BUMI_2000_8_3B_1_a12,
     author = {Kreuzer, Martin},
     title = {On the canonical ideal of a set of points},
     journal = {Bollettino della Unione matematica italiana},
     pages = {221--261},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {1},
     year = {2000},
     zbl = {0971.14037},
     mrnumber = {1414445},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a12/}
}
TY  - JOUR
AU  - Kreuzer, Martin
TI  - On the canonical ideal of a set of points
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 221
EP  - 261
VL  - 3B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a12/
LA  - en
ID  - BUMI_2000_8_3B_1_a12
ER  - 
%0 Journal Article
%A Kreuzer, Martin
%T On the canonical ideal of a set of points
%J Bollettino della Unione matematica italiana
%D 2000
%P 221-261
%V 3B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a12/
%G en
%F BUMI_2000_8_3B_1_a12
Kreuzer, Martin. On the canonical ideal of a set of points. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 221-261. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a12/

[1] S. Beck-M. Kreuzer, How to compute the canonical module of a set of points, in L. GONZÁLES-VEGA and T. RECIO eds., Algorithms in Algebraic Geometry and Applications, Proc. Conf. MEGA '94, Santander 1994, Progress in Math., 143, Birkhäuser Verlag, Basel (1996), 51-78. | MR | Zbl

[2] M. P. Cavaliere-M. E. Rossi-G. Valla, Quadrics through a set of points and their syzygies, Math. Z., 218 (1995), 25-42. | MR | Zbl

[3] M. P. Cavaliere, M. E. Rossi - G. Valla, On Green-Lazarsfeld and minimal resolution conjecture for $n+3$ points in $\mathbb{P}^{n}$, J. Pure Appl. Algebra, 85 (1993), 105-117. | MR | Zbl

[4] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., 150, Springer, New York (1995). | MR | Zbl

[5] D. Eisenbud-S. Popescu, Gale duality and free resolutions of ideals of points, preprint (1996). | fulltext mini-dml | MR | Zbl

[6] A. V. Geramita-M. Kreuzer-L. Robbiano, Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc., 339 (1993), 163-189. | MR | Zbl

[7] A. V. Geramita-P. Maroscia-L. G. Roberts, The Hilbert function of a reduced $k$-algebra, J. London Math. Soc. (2), 28 (1983), 443-452. | MR | Zbl

[8] J. P. Hansen, Points in uniform position and maximum distance separable codes, in F. ORECCHIA and L. CHIANTINI eds., Zero-Dimensional Schemes, Proc. Conf. Ravello 1992, de Gruyter, Berlin (1994), 205-211. | MR | Zbl

[9] J. Herzog-E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Lect. Notes in Math., 238, Springer, Heidelberg (1971). | MR | Zbl

[10] M. Kreuzer, On the canonical module of a 0-dimensional scheme, Can. J. Math., 46 (1994), 357-379. | MR | Zbl

[11] M. Kreuzer, Some applications of the canonical module of a 0-dimensional scheme, in F. ORECCHIA and L. CHIANTINI eds., Zero-Dimensional Schemes, Proc. Conf. Ravello 1992, de Gruyter, Berlin (1994), 243-252. | MR | Zbl

[12] T. Mora-L. Robbiano, Points in affine and projective spaces, in D. EISENBUD and L. ROBBIANO eds., Computational Algebraic Geometry and Commutative Algebra, Proc. Conf. Cortona (1991), Symposia Math., 34, Cambridge University Press, Cambridge (1993), 106-150. | MR | Zbl

[13] F. Orecchia, Points in generic position and the conductor of curves with ordinary singularities, J. London Math. Soc. (2), 24 (1981), 85-96. | MR | Zbl