Global existence and regularity of solutions for complex Ginzburg-Landau equations
Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 193-211.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si considerano equazioni di Ginzburg-Landau complesse del tipo $u_{t}-\alpha\Delta u+ P(|u|^{2})u=0$ in $\mathbb{R}^{N}$ dove $P$ è polinomio di grado $K$ a coefficienti complessi e $\alpha$ è un numero complesso con parte reale positiva $\Re\alpha$. Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo $P$ sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso $|\alpha| C\Re\alpha$, dove $C$ dipende da $K$ e $N$.
@article{BUMI_2000_8_3B_1_a10,
     author = {Descombes, St\'ephane and Moussaoui, Mohand},
     title = {Global existence and regularity of solutions for complex {Ginzburg-Landau} equations},
     journal = {Bollettino della Unione matematica italiana},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {Ser. 8, 3B},
     number = {1},
     year = {2000},
     zbl = {1102.35335},
     mrnumber = {1264120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/}
}
TY  - JOUR
AU  - Descombes, Stéphane
AU  - Moussaoui, Mohand
TI  - Global existence and regularity of solutions for complex Ginzburg-Landau equations
JO  - Bollettino della Unione matematica italiana
PY  - 2000
SP  - 193
EP  - 211
VL  - 3B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/
LA  - en
ID  - BUMI_2000_8_3B_1_a10
ER  - 
%0 Journal Article
%A Descombes, Stéphane
%A Moussaoui, Mohand
%T Global existence and regularity of solutions for complex Ginzburg-Landau equations
%J Bollettino della Unione matematica italiana
%D 2000
%P 193-211
%V 3B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/
%G en
%F BUMI_2000_8_3B_1_a10
Descombes, Stéphane; Moussaoui, Mohand. Global existence and regularity of solutions for complex Ginzburg-Landau equations. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 193-211. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/

[1] C. R. Doering-J. D. Gibbon-C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318. | MR | Zbl

[2] G. Dore-A. Venni, On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286. | Zbl

[3] S. Fauve-O. Thual, Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833.

[4] J. Ginibre-G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228. | MR | Zbl

[5] J. Ginibre-G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79. | MR | Zbl

[6] M. Hiber-J. Prüss, Heat kernels and maximal $L^{p}$-$L^{q}$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669. | MR | Zbl

[7] O. A. Ladyzhenskaya-V. A. Solonnikov-N. N. Ural'Tseva, Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc. Providence, RI (1968). | Zbl

[8] P. De Mottoni-M. Schatzman, Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589. | MR | Zbl

[9] J. Prüss-H. Sohr, On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452. | MR | Zbl

[10] J. Prüss-H. Sohr, Imaginary powers of elliptic second order differential operators in $L^{p}$-spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192. | fulltext mini-dml | MR | Zbl

[11] R. Seeley, Norms and domains of the complex powers $A^{z}_{B}$, Am. Jour. Math., 93 (1971), 299-309. | MR | Zbl

[12] H. Tribel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978). | Zbl