Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2000_8_3B_1_a10, author = {Descombes, St\'ephane and Moussaoui, Mohand}, title = {Global existence and regularity of solutions for complex {Ginzburg-Landau} equations}, journal = {Bollettino della Unione matematica italiana}, pages = {193--211}, publisher = {mathdoc}, volume = {Ser. 8, 3B}, number = {1}, year = {2000}, zbl = {1102.35335}, mrnumber = {1264120}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/} }
TY - JOUR AU - Descombes, Stéphane AU - Moussaoui, Mohand TI - Global existence and regularity of solutions for complex Ginzburg-Landau equations JO - Bollettino della Unione matematica italiana PY - 2000 SP - 193 EP - 211 VL - 3B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/ LA - en ID - BUMI_2000_8_3B_1_a10 ER -
%0 Journal Article %A Descombes, Stéphane %A Moussaoui, Mohand %T Global existence and regularity of solutions for complex Ginzburg-Landau equations %J Bollettino della Unione matematica italiana %D 2000 %P 193-211 %V 3B %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/ %G en %F BUMI_2000_8_3B_1_a10
Descombes, Stéphane; Moussaoui, Mohand. Global existence and regularity of solutions for complex Ginzburg-Landau equations. Bollettino della Unione matematica italiana, Série 8, 3B (2000) no. 1, pp. 193-211. http://geodesic.mathdoc.fr/item/BUMI_2000_8_3B_1_a10/
[1] Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318. | MR | Zbl
- - ,[2] On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286. | Zbl
- ,[3] Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833.
- ,[4] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228. | MR | Zbl
- ,[5] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79. | MR | Zbl
- ,[6] Heat kernels and maximal $L^{p}$-$L^{q}$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669. | MR | Zbl
- ,[7] Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc. Providence, RI (1968). | Zbl
- - ,[8] Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589. | MR | Zbl
- ,[9] On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452. | MR | Zbl
- ,[10] Imaginary powers of elliptic second order differential operators in $L^{p}$-spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192. | fulltext mini-dml | MR | Zbl
- ,[11] Norms and domains of the complex powers $A^{z}_{B}$, Am. Jour. Math., 93 (1971), 299-309. | MR | Zbl
,[12] Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978). | Zbl
,