Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1999_8_2B_2_a13, author = {Berndt, J\"urgen and Vanhecke, Lieven}, title = {$\phi$-symmetric spaces and weak symmetry}, journal = {Bollettino della Unione matematica italiana}, pages = {389--392}, publisher = {mathdoc}, volume = {Ser. 8, 2B}, number = {2}, year = {1999}, zbl = {0978.53091}, mrnumber = {1456247}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/} }
TY - JOUR AU - Berndt, Jürgen AU - Vanhecke, Lieven TI - $\phi$-symmetric spaces and weak symmetry JO - Bollettino della Unione matematica italiana PY - 1999 SP - 389 EP - 392 VL - 2B IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/ LA - en ID - BUMI_1999_8_2B_2_a13 ER -
Berndt, Jürgen; Vanhecke, Lieven. $\phi$-symmetric spaces and weak symmetry. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 389-392. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/
[1] Examples of weakly symmetric spaces in contact geometry, Boll. Un. Mat. Ital., (7) 11-B (1997), Suppl. fasc. 2, 1-10. | MR | Zbl
, , ,[2] Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Springer-Verlag, Berlin, Heidelberg (1995). | MR | Zbl
- - ,[3] Geometry of weakly symmetric spaces, J. Math. Soc. Japan, 48 (1996), 745-760. | fulltext mini-dml | MR | Zbl
- ,[4] Contact Manifolds in Riemannian Geometry, Lect. Notes. Math., 509, Springer-Verlag, Berlin, Heidelberg, New York (1976). | MR | Zbl
,[5] Groups and Geometric Analysis, Academic Press, Orlando (1984). | MR | Zbl
,[6] Stiefel manifolds and non-commutative $\phi$-symmetric spaces, preprint.
,[7] The classification of $\phi$-symmetric Sasakian manifolds, Monatsh. Math., 115 (1993), 83-98. | MR | Zbl
- ,[8] D'Atri spaces, in Topics in Geometry, In Memory of Joseph D'Atri, Birkhäuser, Boston, Basel, Berlin (1996), 241-284. | MR | Zbl
- - ,[9] Commutative spaces which are not weakly symmetric, Bull. London Math. Soc., to appear. | MR | Zbl
,[10] Modified $H$-type groups and symmetric-like Riemannian spaces, preprint 1997. | MR | Zbl
,[11] Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds, J. Diff. Geom., 14 (1979), 167-177. | fulltext mini-dml | MR | Zbl
,[12] Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion, in Global Differential Geometry and Global Analysis 1984, Lect. Notes Math., 1156, Springer-Verlag, Berlin, Heidelberg, New York (1985), 264-279. | MR | Zbl
,[13] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. | MR | Zbl
,[14] Sasakian $\phi$-symmetric spaces, Tôhoku Math. J., 29 (1977), 91-113. | fulltext mini-dml | MR | Zbl
,[15] Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J., 36 (1984), 293-314. | fulltext mini-dml | MR | Zbl
,