$\phi$-symmetric spaces and weak symmetry
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 389-392.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Proviamo che tutti gli spazi semplicemente connessi $\phi$-simmetrici sono debolmente simmetrici e quindi commutativi.
@article{BUMI_1999_8_2B_2_a13,
     author = {Berndt, J\"urgen and Vanhecke, Lieven},
     title = {$\phi$-symmetric spaces and weak symmetry},
     journal = {Bollettino della Unione matematica italiana},
     pages = {389--392},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {2},
     year = {1999},
     zbl = {0978.53091},
     mrnumber = {1456247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/}
}
TY  - JOUR
AU  - Berndt, Jürgen
AU  - Vanhecke, Lieven
TI  - $\phi$-symmetric spaces and weak symmetry
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 389
EP  - 392
VL  - 2B
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/
LA  - en
ID  - BUMI_1999_8_2B_2_a13
ER  - 
%0 Journal Article
%A Berndt, Jürgen
%A Vanhecke, Lieven
%T $\phi$-symmetric spaces and weak symmetry
%J Bollettino della Unione matematica italiana
%D 1999
%P 389-392
%V 2B
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/
%G en
%F BUMI_1999_8_2B_2_a13
Berndt, Jürgen; Vanhecke, Lieven. $\phi$-symmetric spaces and weak symmetry. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 2, pp. 389-392. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_2_a13/

[1] J. Berndt , Ph. Tondeur , L. Vanhecke , Examples of weakly symmetric spaces in contact geometry, Boll. Un. Mat. Ital., (7) 11-B (1997), Suppl. fasc. 2, 1-10. | MR | Zbl

[2] J. Berndt - F. Tricerri - L. Vanhecke , Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Springer-Verlag, Berlin, Heidelberg (1995). | MR | Zbl

[3] J. Berndt - L. Vanhecke , Geometry of weakly symmetric spaces, J. Math. Soc. Japan, 48 (1996), 745-760. | fulltext mini-dml | MR | Zbl

[4] D. E. Blair , Contact Manifolds in Riemannian Geometry, Lect. Notes. Math., 509, Springer-Verlag, Berlin, Heidelberg, New York (1976). | MR | Zbl

[5] S. Helgason , Groups and Geometric Analysis, Academic Press, Orlando (1984). | MR | Zbl

[6] J. A. Jiménez , Stiefel manifolds and non-commutative $\phi$-symmetric spaces, preprint.

[7] J. A. Jiménez - O. Kowalski , The classification of $\phi$-symmetric Sasakian manifolds, Monatsh. Math., 115 (1993), 83-98. | MR | Zbl

[8] O. Kowalski - F. Prüfer - L. Vanhecke , D'Atri spaces, in Topics in Geometry, In Memory of Joseph D'Atri, Birkhäuser, Boston, Basel, Berlin (1996), 241-284. | MR | Zbl

[9] J. Lauret , Commutative spaces which are not weakly symmetric, Bull. London Math. Soc., to appear. | MR | Zbl

[10] J. Lauret , Modified $H$-type groups and symmetric-like Riemannian spaces, preprint 1997. | MR | Zbl

[11] D. S. P. Leung , Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds, J. Diff. Geom., 14 (1979), 167-177. | fulltext mini-dml | MR | Zbl

[12] H. Reckziegel , Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion, in Global Differential Geometry and Global Analysis 1984, Lect. Notes Math., 1156, Springer-Verlag, Berlin, Heidelberg, New York (1985), 264-279. | MR | Zbl

[13] A. Selberg , Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. | MR | Zbl

[14] T. Takahashi , Sasakian $\phi$-symmetric spaces, Tôhoku Math. J., 29 (1977), 91-113. | fulltext mini-dml | MR | Zbl

[15] M. Takeuchi , Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J., 36 (1984), 293-314. | fulltext mini-dml | MR | Zbl