When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?
Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 189-217.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sia a un intero algebrico con il polinomio minimale $f(X)$. Si danno condizioni necessarie e sufficienti affinché l'anello $\mathbb{Z}[\alpha]$ sia seminormale o $t$-chiuso per mezzo di $f(X)$. Come applicazione, in particolare, si ottiene che se $f(X)=X^{3}+aX+b$, $a$, $b \in \mathbb{Z}$ le condizioni sono espresse mediante il discriminante de $f(X)$.
@article{BUMI_1999_8_2B_1_a8,
     author = {Picavet-L'Hermitte, Martine},
     title = {When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?},
     journal = {Bollettino della Unione matematica italiana},
     pages = {189--217},
     publisher = {mathdoc},
     volume = {Ser. 8, 2B},
     number = {1},
     year = {1999},
     zbl = {0921.13013},
     mrnumber = {527017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/}
}
TY  - JOUR
AU  - Picavet-L'Hermitte, Martine
TI  - When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 189
EP  - 217
VL  - 2B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/
LA  - en
ID  - BUMI_1999_8_2B_1_a8
ER  - 
%0 Journal Article
%A Picavet-L'Hermitte, Martine
%T When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?
%J Bollettino della Unione matematica italiana
%D 1999
%P 189-217
%V 2B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/
%G en
%F BUMI_1999_8_2B_1_a8
Picavet-L'Hermitte, Martine. When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 189-217. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/

[1] T. Albu , On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. | fulltext mini-dml | MR | Zbl

[2] D. F. Anderson - D. E. Dobbs - J. A. Huckaba , On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. | MR | Zbl

[3] D. E. Dobbs - M. Fontana , Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. | MR | Zbl

[4] D. Ferrand - J. P. Olivier , Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. | MR | Zbl

[5] G. Maury , La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. | fulltext mini-dml | MR | Zbl

[6] G. Picavet - M. Picavet-L'Hermitte , Morphismes $t$-clos, Comm. Algebra, 21 (1993), 179-219. | MR | Zbl

[7] G. Picavet - M. Picavet-L'Hermitte , Anneaux $t$-clos, Comm. Algebra, 23 (1995), 2643-2677. | MR | Zbl

[8] M. Picavet-L'Hermitte , Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. | MR | Zbl

[9] P. Samuel , Théorie Algébrique des Nombres (Hermann, Paris) 1967. | MR | Zbl

[10] R. G. Swan , On seminormality, J. Algebra, 67 (1980), 210-229. | MR | Zbl

[11] H. Tanimoto , Normality, seminormality and quasinormality of $\mathbb{Z}[\sqrt[n]{m}]$, Hiroshima Math. J., 17 (1987), 29-40. | fulltext mini-dml | MR | Zbl

[12] K. Uchida , When is $\mathbb{Z}[\alpha]$ the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. | fulltext mini-dml | MR | Zbl