Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1999_8_2B_1_a8, author = {Picavet-L'Hermitte, Martine}, title = {When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?}, journal = {Bollettino della Unione matematica italiana}, pages = {189--217}, publisher = {mathdoc}, volume = {Ser. 8, 2B}, number = {1}, year = {1999}, zbl = {0921.13013}, mrnumber = {527017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/} }
TY - JOUR AU - Picavet-L'Hermitte, Martine TI - When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed? JO - Bollettino della Unione matematica italiana PY - 1999 SP - 189 EP - 217 VL - 2B IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/ LA - en ID - BUMI_1999_8_2B_1_a8 ER -
Picavet-L'Hermitte, Martine. When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?. Bollettino della Unione matematica italiana, Série 8, 2B (1999) no. 1, pp. 189-217. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2B_1_a8/
[1] On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. | fulltext mini-dml | MR | Zbl
,[2] On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. | MR | Zbl
- - ,[3] Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. | MR | Zbl
- ,[4] Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. | MR | Zbl
- ,[5] La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. | fulltext mini-dml | MR | Zbl
,[6] Morphismes $t$-clos, Comm. Algebra, 21 (1993), 179-219. | MR | Zbl
- ,[7] Anneaux $t$-clos, Comm. Algebra, 23 (1995), 2643-2677. | MR | Zbl
- ,[8] Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. | MR | Zbl
,[9] Théorie Algébrique des Nombres (Hermann, Paris) 1967. | MR | Zbl
,[10] On seminormality, J. Algebra, 67 (1980), 210-229. | MR | Zbl
,[11] Normality, seminormality and quasinormality of $\mathbb{Z}[\sqrt[n]{m}]$, Hiroshima Math. J., 17 (1987), 29-40. | fulltext mini-dml | MR | Zbl
,[12] When is $\mathbb{Z}[\alpha]$ the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. | fulltext mini-dml | MR | Zbl
,