Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica
Bollettino della Unione matematica italiana, Série 8, 2A (1999) no. 3, pp. 297-316.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

La moderna finanza matematica è un settore interdisciplinare tra economia e matematica che, allo stato attuale, è a forte contenuto matematico, soprattutto probabilistico. Iniziamo questo articolo accennando alle origini di questa disciplina, che non sono molto lontane nel tempo e che erano di natura più economica/econometrica. Successivamente arriveremo a descrivere gli sviluppi più recenti e più tipicamente matematici.
@article{BUMI_1999_8_2A_3_a3,
     author = {Runggaldier, Wolfgang J.},
     title = {Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica},
     journal = {Bollettino della Unione matematica italiana},
     pages = {297--316},
     publisher = {mathdoc},
     volume = {Ser. 8, 2A},
     number = {3},
     year = {1999},
     zbl = {05292608},
     mrnumber = {1850791},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_3_a3/}
}
TY  - JOUR
AU  - Runggaldier, Wolfgang J.
TI  - Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica
JO  - Bollettino della Unione matematica italiana
PY  - 1999
SP  - 297
EP  - 316
VL  - 2A
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_3_a3/
LA  - it
ID  - BUMI_1999_8_2A_3_a3
ER  - 
%0 Journal Article
%A Runggaldier, Wolfgang J.
%T Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica
%J Bollettino della Unione matematica italiana
%D 1999
%P 297-316
%V 2A
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_3_a3/
%G it
%F BUMI_1999_8_2A_3_a3
Runggaldier, Wolfgang J. Sugli sviluppi della matematica applicata in un settore interdisciplinare: la finanza matematica. Bollettino della Unione matematica italiana, Série 8, 2A (1999) no. 3, pp. 297-316. http://geodesic.mathdoc.fr/item/BUMI_1999_8_2A_3_a3/

[1] AAVV, Atti del Convegno Ricordo di Bruno de Finetti Professore nell’Ateneo triestino, Dipartimento di Matematica Applicata «Bruno de Finetti», Trieste, 1987.

[2] Ph. Artzner - F. Delbaen - J.-M. Eber - D. Heath, Coherent measures of risk, Mathematical Finance, 9(1999), 203-228. | DOI | MR | Zbl

[3] K. J. Arrow - G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22(1954), 265-290. | MR | Zbl

[4] L. Bachelier, Théorie de la spéculation, Gauthier-Villars 1900. Anche in: Annales Scientifiques de l’École Normale Supérieure, 1900, 21-86. | fulltext mini-dml | Jbk 31.0241.02

[5] P. Baldi, Equazioni differenziali stocastiche e applicazioni, Quaderni UMI Vol. 28, Pitagora, Bologna, 1984. | Zbl

[6] D.Bernoulli, Exposition of a new theory on the measurement of risk, trad. di E. Sommer in Econometrica, 22(1954), 23-36. | MR | Zbl

[7] T. R. Bielecki - S. R. Pliska, Risk sensitive asset management with transaction costs, Finance and Stochastics, 4(2000), 1-33. | DOI | MR

[8] T. Björk - G. Di Masi - Yu. Kabanov - W. Runggaldier, Towards a general theory of bond markets, Finance and Stochastics, 1(1997), 141-174. | Zbl

[9] F. Black - M. S. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81(1973), 637-654. | Zbl

[10] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31(1986), 307-327. | DOI | MR | Zbl

[11] E. Canestrelli - C. Nardelli, Criteri per la selezione del portafoglio, G. Giappichelli, Torino, 1991.

[12] E. Castagnoli - L. Peccati, Introduzione alla selezione di portafoglio, Cooperativa di Cultura «Lorenzo Milani», Torino, 1991.

[13] J.-M. Courtault - Yu. Kabanov - B. Bru - P. Crépel, Louis Bachelier on the centenary of Théorie de la Spéculation, Mathematical Finance, 10 (2000), 341-353. | DOI | MR

[14] J. C. Cox - S. A. Ross - M. Rubinstein, Option pricing: a simplified approach, Journal of Financial Economics, 7(1979), 229-263. | Zbl

[15] J. Cvitanić - I. Karatzas, On dynamic measures of risk, Finance and Stochastics, 3(1999), 451-482. | DOI | MR | Zbl

[16] J. Cvitanić - H. Pham - N. Touzi, A closed-form solution to the problem of super-replication under transaction costs, Finance and Stochastics, 3 (1999), 35-54. | Zbl

[17] R. C. Dalang - A. Morton - W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics and Stochastic Reports, 29(1990), 185-201. | MR | Zbl

[18] M. H. A. Davis - A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15(1990), 676-713. | DOI | MR | Zbl

[19] F. Delbaen - W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300(1994), 463-520. | DOI | MR | Zbl

[20] E. Dimson - M. Moussavian, Three centuries of asset pricing, London Business School, Institute of Finance & Accounting WP-295, Jan 2000.

[21] D. Duffie - R. Kan, A yield factor model of interest rates, Mathematical Finance, 6(1966), 379-406. | Zbl

[22] N. Elkaroui - M. C. Quenez, Dynamic programming and pricing of contingent claimsin an incomplete market, SIAM J. on Control and Optimiz., 33(1995), 29-66. | DOI | MR | Zbl

[23] R. E. Engle, Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation, Econometrica, 50(1982), 987-1007. | DOI | MR | Zbl

[24] E. F. Fama, The behaviour of stock market prices, Journal of Business, 38 (1965), 34-105.

[25] H. Föllmer - P. Leukert, Efficient hedging: cost versus shortfall risk, Finance and Stochastics, 4(2000), 117-146. | DOI | MR

[26] H. Föllmer - D. Sondermann, Hedging of nonredundant contingent claims, In: Contributions to Mathematical Economics in Honor of Gérard Debreu, W. Hildenbrand, A. Mas-Colell, eds. North Holland, Amsterdam, 1986, 205-223. | MR | Zbl

[27] H. Föllmer - M. Schweizer, Hedging of contingent claims under incomplete information, In: Applied Stochastic Analysis, M. H. A. Davis, R. J. Elliott, eds. Gordon & Breach, London, 1991, 389-414. | MR | Zbl

[28] M. Frittelli, Introduction to a theory of value coherent with the no-arbitrage principle, Finance and Stochastics, 4(2000), 275-297. | DOI | MR

[29] M. Frittelli - P. Lakner, Almost sure characterization of martingales, Stochastics and Stochastics Reports, 49(1994), 181-190. | MR | Zbl

[30] C. Gourieroux, ARCH models and financial applications, Springer, 1997. | DOI | MR | Zbl

[31] J. M. Harrison - D. M. Kreps, Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, 20(1979), 381-408. | DOI | MR | Zbl

[32] J. M. Harrison - S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Processes and Their Applications, 11(1981), 215-260. | DOI | MR | Zbl

[33] J. M. Harrison - S. R. Pliska, A stochastic calculus model of continuous trading: completemarkets, Stochastic Processes and Their Applications, 15 (1983), 313-316. | DOI | MR | Zbl

[34] J. Hull - A. White, The pricing of options with stochastic volatilities, Journal of Finance, 42(1987), 281-300.

[35] I. Karatzas, Optimization problems in the theory of continuous trading, SIAM J. on Control and Optimiz., 27(1989), 1221-1259. | DOI | MR | Zbl

[36] I. Karatzas - J. Lehoczky - S. E. Shreve, Optimal portfolio and consumption decisions for a small investor on a finite horizon, SIAM J. on Control and Optimiz., 25(1987), 1557-1586. | DOI | MR | Zbl

[37] R. Korn, Optimal portfolios: stochastic models for optimal investment and risk management in continuous time, World Scientific, Singapore 1997. | Zbl

[38] J. Lintner, The valuation of risky assets and the selection of risky investments instock portfolios and capital budgets, Review of Economics and Statistics, 47(1965), 13-37.

[39] M. J. P. Magill - G. M. Costantinides, Portfolio selection with transaction costs, Journal of Economic Theory, 13(1976), 245-263. | MR | Zbl

[40] B. Mandelbrot, The variation of certain speculative prices, Journal of Business, 36(1963), 394-419.

[41] B. Mandelbrot, Fractals and scaling in finance: discontinuity, concentration, risk, Springer 1997. | MR | Zbl

[42] R. N. Mantegna - H. E. Stanley, An introduction to Econophysics: correlation and complexity in finance, Cambridge University Press, 2000. | MR | Zbl

[43] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.

[44] F. Mercurio - W. J. Runggaldier, Option pricing for jump-diffusions: approximations and their interpretation, Mathematical Finance, 3(1993), 191-200. | Zbl

[45] R. C. Merton, An intertemporal capital asset pricing model, Econometrica, 41(1973), 867-887. | MR | Zbl

[46] R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3(1976), 125-144. | Zbl

[47] J. Mossin, Equilibrium in a capital asset market, Econometrica, 3 (1966), 768-783.

[48] S. Mulinacci, An approximation of American option prices in a jump-diffusion model, Stochastic Processes and Their Applications, 62 (1996), 1-17. | DOI | MR | Zbl

[49] S. A. Ross, The arbitrage theory of capital asset pricing, Journal of Economic Theory, 13(1976), 341-360. | MR

[50] W. E. Sharpe, A simplified model of portfolio analysis, Management Science, 9(1963), 277-293.

[51] W. E. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19(1964), 425-442.

[52] S. M. Sundaresan, Continuous-Time Methods in Finance: A Review and an Assessment, Journal of Finance, 55(2000), 1569-1622.

[53] M. S. Taqqu, Bachelier and his Times: A Conversation with Bernard Bru, Finance and Stochastics, 5(2001). | DOI | MR

[54] J. Vonneumann - O. Morgenstern, Theory of Games and Economic Behaviour, Princeton University Press 1944. | MR | Zbl