Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_1998_8_1B_1_a1, author = {Visintin, A.}, title = {Introduction to the models of phase transitions}, journal = {Bollettino della Unione matematica italiana}, pages = {1--47}, publisher = {mathdoc}, volume = {Ser. 8, 1B}, number = {1}, year = {1998}, zbl = {0903.35097}, mrnumber = {420406}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/} }
Visintin, A. Introduction to the models of phase transitions. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 1-47. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/
[1] Homogeneous Nucleation Theory, Academic Press, New York (1974).
,[2] Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC (1993).
- ,[3] A microscopic theory for antiphase motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095.
- ,[4] Existence and Regularity Almost Everywhere of Elliptic Variational Problems with Constraints, Memoirs A.M.S., 165 (1976). | MR | Zbl
,[5] Curvature-driven flows: a variational approach, S.I.A.M. J. Contr. Optimiz., 31 (1993), 387-437. | MR | Zbl
- - ,[6] Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, J. Geom. Anal. (to appear). | MR | Zbl
- ,[7] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR | Zbl
- ,[8] A mathematical model of dynamics of non-isothermal phase separation, Physica D, 59 (1992), 389-416 | MR | Zbl
- ,[9] Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434 | MR | Zbl
- - ,[10] Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). | Zbl
- - ,[11] Degenerate phase transition problems of parabolic type: smoothness of the front, Preprint, Princeton (1996). | Zbl
- - ,[12] A finite difference scheme for melting problems, J. Inst. Math. Appl., 13 (1974), 353-366. | MR
,[13] Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. | MR | Zbl
,[14] Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester (1983). | MR | Zbl
- ,[15] Remark on a flame propagation model, Rapport I.N.R.I.A., 464 (1985).
,[16] Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972).
,[17] A numerical method for solving the problem $u_t - \Delta f(u) = 0$, R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. | fulltext mini-dml | MR | Zbl
- - ,[18] Some properties of the nonlinear semigroup for the problem $u_t - \Delta f(u) = 0$, Nonlinear Analysis, T.M.A., 8 (1984), 909-939. | MR | Zbl
- ,[19] Mathematical formulation and numerical solution of an alloy solidification problem, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 237-247. | Zbl
- ,[20] On free boundary problems for the Laplace equation, Advanced Study Seminars, 1 (1957), 248-263. | Zbl
,[21] The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy, Euro J. App. Math., 2 (1991), 233-280. | MR | Zbl
- ,[22] Stefan models for eddy currents in steel, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 349-364. | Zbl
,[23] Free boundaries in induction heating, Control Cybernetics, 14 (1985), 69-96. | Zbl
,[24] Mixed methods for a vectorial Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN - J. SPREKELS, eds.), Longman, Harlow (1990), pp. 25-37. | MR | Zbl
,[25] Électromagnétisme, en vue de la modélisation, Springer, Paris (1993). | MR | Zbl
,[26] Homogenization of the Stefan problem and application to composite magnetic media, I.M.A. J. Appl. Math., 27 (1981), 319-334. | MR | Zbl
- ,[27] Free Boundary Problems: Theory and Applications, Pitman, Boston (1985).
- - ,[28] A mixed FEM-BIEM method to solve eddy currents problems, I.E.E.E. Trans. Magn. MAG-18 (1982), 431-435.
- ,[29] The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton (1978). | MR | Zbl
,[30] On some degenerate nonlinear parabolic equations, in: Nonlinear Functional Analysis (F. E. BROWDER, ed.). Proc. Symp. Pure Math., XVIII. A.M.S., Providence (1970), pp. 28-38. | MR | Zbl
,[31] Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam (1973). | MR | Zbl
,[32] The Growth of Crystals from Liquids, North-Holland, Amsterdam (1973).
,[33] Hysteresis and Phase Transitions, Springer, Heidelberg (1996). | MR | Zbl
- ,[34] G. BUTTAZZO - A. VISINTIN (eds.), Motion by Mean Curvature and Related Topics, De Gruyter, Berlin (1994). | MR | Zbl
[35] The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. | MR | Zbl
,[36] Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. | MR | Zbl
,[37] Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. | MR | Zbl
- ,[38] Continuity of the temperature in the Stefan prob- lem, Indiana Univ. Math. J., 28 (1979), 53-70. | MR | Zbl
- ,[39] An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. | MR | Zbl
,[40] Stefan and Hele-Shaw type models as asymptotic limits of phase field equations,, Pys. Rev. A, 39 (1989), 5887-5896. | MR | Zbl
,[41] The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, I.M.A. J. Appl. Math., 44 (1990), 77-94. | MR | Zbl
,[42] Phase field and sharp-interface alloy models, Phys. Rev. E, 48 (1993), 1897-1909 | MR
- ,[43] Theory of crystal growth and interface motion in crystalline materials, Acta Metall., 8 (1960), 554-562.
,[44] On spinodal decomposition, Acta Metall., 9 (1961), 795-801.
,[45] Free energy of a nonuniform system. I. Interfacial free energy. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 28 (1957), 258-267; 31 (1959), 688-699.
- ,[46] Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063.
- ,[47] The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park (1984). | MR | Zbl
,[48] The steady state Stefan problem with convection, with mixed temperature and non-linear heat flux boundary conditions, in: Free Boundary Problems (E. MAGENES, ed.), Istituto di Alta Matematica, Roma (1980), pp. 231-266. | MR | Zbl
- ,[49] On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. | MR | Zbl
- ,[50] J. M. CHADAM - H. RASMUSSEN (eds.), Emerging Applications in Free Boundary Problems, Longman, Harlow (1993). | MR
[51] J. M. CHADAM - H. RASMUSSEN (eds.) Free Boundary Problems Involving Solids, Longman, Harlow (1993). | MR
[52] J. M. CHADAM - H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow (1993). | MR
[53] Principles of Solidification, Wiley, New York (1964).
,[54] Local existence and uniqueness of solutions of the Stefan prob- lem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 154 (1992), 350-362. | MR | Zbl
- ,[55] Uniqueness and existence of viscosity solutions of generalized solutions of mean curvature flow equation, J. Diff. Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl
- - ,[56] The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London (1975).
,[57] Weak solution to hyperbolic Stefan problems with memory, No.D.E.A. (to appear). | MR | Zbl
- - ,[58] Global smooth solution to the standard phase-field model with memory, Adv. Diff. Eqs. (to appear). | MR | Zbl
- - ,[59] Asymptotic analysis of a phase field model with memory for vanishing time relaxation, Preprint, Dipartimento di Matematica dell'Università di Torino (1995). | MR | Zbl
- - ,[60] Hyperbolic phase change problems in heat conduction with memory, Proc. Roy. Soc. Edingurgh A, 123 (1993), 571-592. | MR | Zbl
- ,[61] On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl., 169 (1995), 269-289. | MR | Zbl
- ,[62] Stefan problems and the Penrose-Fife phase field model, Adv. Math. Sci. Appl. (to appear). | MR | Zbl
- ,[63] Free and Moving Boundary Problems, Clarendon Press, Oxford (1984). | MR | Zbl
,[64] Proceedings of an I.M.A. Conference on Crystal Growth, I.M.A. J. of Appl. Math., 35 (1985) 115-264.
- ,[65] Numerical solution of alloy solidification problem revisited, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 122-131. | Zbl
,[66] On the numerical solution of an alloy solidification problem, Int. J. Heat Mass Transfer, 22 (1979), 941-947.
- ,[67] A Bibliography of Free Boundary Problems, M.R.C. Rep. No. 1793, Math. Res. Cent., Univ. of Wisconsin (1977).
,[68] Some results on the multi-phase Stefan problem, Comm. in P.D.E.s, 2 (1977), 1017-1044. | MR | Zbl
,[69] Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. | Zbl
,[70] Asymptotic behavior of solutions to a multi-phase Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN and J. SPREKELS, eds.), Longman, Harlow (1990), pp. 811-817. | Zbl
,[71] Asymptotic behavior of solutions to a multi-phase Stefan problem, Japan J. Appl. Math., 3 (1986), 15-36. | MR | Zbl
- ,[72] Periodicity and almost periodicity of the solutions to a multi-phase Stefan problem, Nonlinear Analysis, T.M.A., 12 (1988), 921-934. | MR | Zbl
- ,[73] A. DAMLAMIAN - J. SPRUCK - A. VISINTIN (eds.), Curvature Flows and Related Topics, Gakkotosho, Tokyo (1995). | MR
[74] On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. | MR | Zbl
,[75] J. I. DIAZ - M. A. HERRERO - A. LIÑÁN - J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1995). | MR
[76] Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. | MR | Zbl
,[77] Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. | MR | Zbl
,[78] The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. A.M.S., 282 (1984), 183-204. | MR | Zbl
- ,[79] Conduction-convection problems with change of phase, J. Diff. Eqs., 62 (1986), 129-185. | MR | Zbl
- ,[80] On the singular equation $\beta(u)_t = \Delta u$, Arch. Rat. Mech. Anal., 132 (1995), 247-309. | MR | Zbl
- ,[81] Wulff Construction. A Global Shape from Local Interaction, A.M.S., Providence (1992). | MR | Zbl
- - ,[82] A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. | MR | Zbl
,[83] Rates of Phase Transformations, Academic Press, Orlando (1985).
,[84] Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. | MR | Zbl
,[85] The solution of a two-phase Stefan by a variational inequality, in: Moving Boundary Problems in Heat Flow and Diffusion (J. R. OCKENDON - W. R. HODGKINS, eds.), Clarendon Press, Oxford (1975), pp. 173-181.
,[86] On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Maths. Applics., 25 (1980), 121-131. | MR | Zbl
,[87] The Cahn-Hilliard model for the kinetics of phase separation, in: Mathematical Models for Phase Change Problems (J.-F. RODRIGUES, ed.), Birkhäuser, Basel (1989), pp. 35-73. | MR | Zbl
,[88] A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg, 88A (1981), 93-107. | MR | Zbl
- ,[89] Weak and Variational Methods for Moving Boundary Problems, Pitman, Boston (1982). | MR | Zbl
- ,[90] On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357. | MR | Zbl
- ,[91] A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. | Zbl
,[92] Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123. | MR | Zbl
- - ,[93] Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681. | fulltext mini-dml | MR | Zbl
- ,[94] Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario (1987). | MR | Zbl
,[95] General free boundary problems for the heat equation, J. Math. Anal. Appl., I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. | Zbl
- ,[96] Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. | MR | Zbl
- ,[97] A. FASANO - M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston (1983). | MR | Zbl
[98] Freezing in porous media: a review of mathematical models, Proc. German-Italian Symp. (V. BOFFI - H. NEUNZERT, eds.), Teubner (1984), pp. 288-311. | MR | Zbl
- ,[99] Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. | MR | Zbl
- ,[100] Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. | MR | Zbl
- ,[101] A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. | MR | Zbl
- ,[102] Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. | MR | Zbl
- - ,[103] Numerical methods for alloy solidification, in: Moving Boundary Problems (D. G. WILSON - A. D. SOLOMON - P. T. BOGGS, eds.) Academic Press, New York (1978), pp. 109-128. | MR | Zbl
,[104] Numerical simulation of free boundary problems using phase field methods, in: The Mathematics of Finite Element and Applications (J. R. WHITEMAN, ed.), Academic Press, London (1982). | Zbl
,[105] Phase field methods for free boundary problems, in: Free Boundary Problems, Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 580-589. | Zbl
,[106] Solidification Processing, McGraw-Hill, New York (1973).
,[107] Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, in: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. ODEN, ed.), University of Texas, Austin (1974), pp. 341-349. | MR | Zbl
,[108] Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C.R. Acad. Sci. Paris, Série II, 301 (1985), 1265-1268. | MR | Zbl
- ,[109] Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. | Zbl
,[110] Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964). | MR | Zbl
,[111] The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. | MR | Zbl
,[112] One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. | MR | Zbl
,[113] Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. | MR | Zbl
,[114] Variational Principles and Free Boundary Problems, Wiley, New York (1982). | MR | Zbl
,[115] A. FRIEDMAN (ed.), Mathematics in Industrial Problems, Parts 1 - 6, Springer, New York (1988-1993). | MR | Zbl
[116] A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. | MR | Zbl
- ,[117] A. FRIEDMAN - J. SPRUCK (eds.), Variational and Free Boundary Problems, Springer, New York (1993). | MR | Zbl
[118] An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 1225-1229. | fulltext mini-dml | MR | Zbl
,[119] Spherically symmetrical Stefan problem with the Gibbs-Thomdon law at the moving boundary, Euro. J. Appl. Math., 7 (1996), 249-275. | MR | Zbl
- ,[120] Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. | MR | Zbl
- ,[121] The heat equation shrinks embedded plane curves to points, J. Diff. Geom., 26 (1987), 285-314. | fulltext mini-dml | MR | Zbl
,[122] On a theory of phase transitions with interfacial energy, Arch. Rational Mech. Anal., 87 (1985), 187-212. | MR
,[123] On the two-phase Stefan problem with interfacial energy and entropy, Arch. Rat. Mech. Anal., 96 (1986), 199-241. | MR | Zbl
,[124] Toward a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal., 100 (1988), 275-312. | MR | Zbl
,[125] Multiphase thermomechanics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal., 104 (1988), 195-221. | MR | Zbl
,[126] On diffusion in two-phase systems: the sharp interface versus the transition layer, in: P.D.E.s and Continuum Models of Phase Transitions (M. RASCLE - D. SERRE - M. SLEMROD, eds.), Springer, Heidelberg (1989), pp. 99-112. | MR | Zbl
,[127] On thermomechanical laws for the motion of a phase interface, Zeit. Angew. Math. Phys., 42 (1991), 370-388. | MR | Zbl
,[128] Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford (1993). | MR | Zbl
,[129] The dynamics of solid-solid phase transitions. 1. Coherent interfaces, Arch. Rational Mech. Anal., 123 (1993), 305-335. | MR | Zbl
,[130] Thermodynamics and supercritical Stefan equations with nucleations, Quart. Appl. Math., LII (1994), 133-155. | MR | Zbl
,[131] M. E. GURTIN - G. MCFADDEN (eds.), On the Evolution of Phase Boundaries, Springer, New York (1991). | MR | Zbl
[132] Some remarks on the Stefan problem with surface structure, Quart. Appl. Math., L (1992), 291-303. | MR | Zbl
- ,[133] Classical solution of the Stefan problem, Tohoku Math., 33 (1981), 297-335. | fulltext mini-dml | MR | Zbl
,[134] One-Dimensional Stefan Problem: An Introduction, Longman, Harlow (1987). | MR | Zbl
,[135] Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.
- ,[136] K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1990). | Zbl
[137] K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston (1990). | MR | Zbl
[138] A mathematical model for the phase transitions in eutectoid carbon steel, I.M.A. J. Appl. Math., 54 (1995), 31-57. | MR | Zbl
,[139] Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266. | fulltext mini-dml | MR | Zbl
,[140] Elliptic regularization and partial regularity for motion by mean curvature, Memoirs A.M.S., 520 (1994). | MR | Zbl
,[141] The two-phase Stefan problem. I, II, Chinese Math. 4 (1963), 686-702; 5 (1964), 36-53. | Zbl
,[142] On the Stefan problem, Math. Sbornik, 53 (1961) 489-514 (Russian). | Zbl
,[143] Systems of nonlinear P.D.E.s arising from dynamical phase transitions, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.), Springer, Heidelberg (1994), pp. 39-86. | MR | Zbl
,[144] Viscosity approach to modelling non-isothermal diffusive phase separation, Japan J. Indust. Appl. Math., 13 (1996), 135-16. | MR | Zbl
- ,[145] Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. | fulltext mini-dml | MR | Zbl
- ,[146] The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. | MR | Zbl
- ,[147] An Introduction to Variational Inequalities and their Applications, Academic Press, New York (1980). | MR | Zbl
- ,[148] Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. | Zbl
,[149] Fundamentals of Solidification, Trans Tech, Aedermannsdorf (1989).
- ,[150] Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.
- ,[151] Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52 (1980), 1-28.
,[152] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). | MR | Zbl
,[153] Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. | MR | Zbl
,[154] Solidification of alloys and the Gibbs-Thomson law, Preprint (1994).
,[155] The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. | MR | Zbl
- ,[156] Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. | MR | Zbl
- ,[157] Phase transition in a multicomponent system, Manuscripta Math., 43 (1983), 261-288. | MR | Zbl
- ,[158] E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma (1980).
[159] Problemi di Stefan bifase in più variabili spaziali, Le Matematiche, 36 (1981), 65-108. | MR | Zbl
,[160] Su di una impostazione parametrica del problema dei capillari, Ann. Univ. Ferrara, 20 (1974), 21-31. | MR | Zbl
- ,[161] Principles of Electrochemical Machining, Chapman and Hall, London (1974).
,[162] On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Maths. Applics., 13 (1974), 13-21.
- ,[163] On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. | Zbl
,[164] On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. USSR.-Sbornik, 40 (1981), 157-178. | Zbl
,[165] An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. | MR | Zbl
,[166] The Stefan Problem, De Gruyter, Berlin (1992) (Russian edition: Nauka, Novosibirsk (1986)). | MR | Zbl
,[167] The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution, Euro J. Appl. Math., 5 (1994), 1-20. | MR | Zbl
,[168] Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré. Anal. Nonlin., 4 (1987), 487-512. | fulltext mini-dml | MR | Zbl
,[169] Gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 123-142. | MR | Zbl
,[170] Morphological stability of a particle growing by diffusion and heat flow, J. Appl. Phys., 34 (1963), 323-329.
- ,[171] Stability of a planar interface during solidification of a dilute alloy, J. Appl. Phys., 35 (1964), 441-451.
- ,[172] Stefan-like problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 321-347. | MR | Zbl
,[173] M. NIEZGÓDKA (ed.), Free Boundary Problems: Theory and Applications, Gakkotosho, Tokyo (to appear). | MR
[174] Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 278-298. | MR
- ,[175] J. R. OCKENDON - W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975). | Zbl
[176] A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. | MR | Zbl
,[177] Stefan-like problems, Meccanica, 28 (1993), 129-143. | Zbl
- - ,[178] Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. | MR | Zbl
- ,[179] R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford (1975).
[180] Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. | MR | Zbl
- ,[181] On the relation between the standard phase-field model and a «thermodynamically consistent» phase-field model, Physica D, 69 (1993), 107-113. | MR | Zbl
- ,[182] The Stefan problem with surface tension as a limit of phase field model, Diff. Eqs., 29 (1993), 395-404. | MR | Zbl
- ,[183] Thermodynamics of Irreversible Processes, Wiley-Interscience, New York (1967). | Zbl
,[184] Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univ. Politecn. Torino, 32 (1973-74), 183-206. | MR | Zbl
,[185] Problemi di diffusione a frontiera libera, Boll. Un. Mat. Ital., 18-A (1981), 11-68. | Zbl
,[186] Mushy regions in phase-change problems, in: Applied Functional Analysis (R. GORENFLO - K.-H. HOFFMANN, eds.), Lang, Frankfurt (1983), pp. 251-269. | MR | Zbl
,[187] Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem, Soviet Dokl. Acad. Sci., 43 (1991), 274-278. | Zbl
,[188] Hele-Shaw flow with a free boundary produced by the injections of a fluid into a narrow channel, J. Fluid. Mech., 56 (1972), 609-618. | Zbl
,[189] Some Hele-Shaw flow with time-dependent free boundaries, J. Fluid. Mech., 102 (1981), 263-278. | MR | Zbl
,[190] An evolutionary continuous casting problem of Stefan type, Quart. Appl. Math., XLIV (1986), 109-131. | MR | Zbl
,[191] Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam (1987). | MR | Zbl
,[192] The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math., 8 (1987), 1-35. | MR | Zbl
,[193] Mathematical Models for Phase Change Problems, Birkhäuser, Basel (1989). | MR | Zbl
,[194] Variational methods in the Stefan problem, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.). Springer, Heidelberg (1994), pp. 147-212. | MR | Zbl
,[195] Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore (1993). | MR | Zbl
,[196] On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. | MR | Zbl
,[197] The Stefan Problem, A.M.S., Providence (1971) (Russian edition: Zvaigzne, Riga (1967)). | MR | Zbl
,[198] On mathematical modelling of growth of an individual monocomponent crystal from melt in a non-uniform temperature field, Control and Cybernetics, 12 (1983), 5-18. | MR | Zbl
,[199] On mathematical models of solid-liquid zones in two phase mono- component system and in binary alloys, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 275-282. | Zbl
,[200] Mathematical modelling of growth of an individual monocomponent crystal from its melt in a non-homogeneous temperature field, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 166-178. | MR | Zbl
,[201] Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. | MR | Zbl
- - ,[202] The penetration of fluid into a porous medium or Hele-Shaw cell, Proc. Roy. Soc. London Ser. A, 245 (1958), 312-329. | MR | Zbl
- ,[203] A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eqs., 20 (1976), 266-269. | MR | Zbl
,[204] Esistenza di una soluzione in problemi analoghi a quello di Stefan, Riv. Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. | Zbl
,[205] Curvature and evolution of fronts, Comm. Math. Phys., 101 (1985), 487-499. | fulltext mini-dml | MR | Zbl
,[206] Mathematical formulation of the Stefan problem, Int. J. Eng. Sci., 20 (1982), 909-912. | MR | Zbl
,[207] A hyperbolic Stefan problem, Quart. Appl. Math., XLV (1987), 769-781. | MR | Zbl
- ,[208] Metastable Liquids, Wiley, Chichester (1974).
,[209] Convergence of the phase-field equation to the Mullins-Sekerka problem with kinetic undercooling, Arch. Rational Mech. Anal., 131 (1995), 139-197. | MR | Zbl
,[210] Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., 176 (1993), 200-223. | MR | Zbl
- ,[211] Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.
,[212] Analysis of coupled heat-mass transport in freezing porous soils, Surveys for Mathematics in Industry, to appear. | Zbl
,[213] Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema de Stefan, Math. Notae, 29 (1981/82), 147-241. | Zbl
,[214] The Two-Phase Stefan Problem and Some Related Conduction Problems, S.B.M.A.C., Gramado (1987). | Zbl
,[215] A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Prog. Naz. M.P.I. Ital., Firenze (1988). | MR | Zbl
,[216] Mean curvature and weighted mean curvature, Acta Metall. Mater., 40 (1992), 1475-1485.
,[217] Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. | MR | Zbl
- ,[218] Phase Changes, Solid State Phys., 3 (1956), 225-306.
,[219] The Molten State of Matter, Wiley, Chichester (1978).
,[220] A mathematical model of the austenite-pearlite transformation in plain steel based on the Scheil additivity rule, Acta Metall., 35 (1987), 2711-2717.
- ,[221] Stefan problem with phase relaxation, I.M.A. J. Appl. Math., 34 (1985), 225-245. | MR | Zbl
,[222] Study of the eddy-current problem taking account of Hall's effect, App. Anal., 19 (1985), 217-226. | MR | Zbl
,[223] A new model for supercooling and superheating effects, I.M.A. J. Appl. Math., 36 (1986), 141-157. | MR | Zbl
,[224] Stefan problem with a kinetic condition at the free boundary, Ann. Mat. Pura Appl., 146 (1987), 97-122. | MR | Zbl
,[225] Coupled thermal and electromagnetic evolution in a ferromagnetic body, Z. Angew. Math. Mech., 67 (1987), 409-417. | MR | Zbl
,[226] Supercooling and superheating effects in heterogeneous systems, Quart. Appl. Math., XLV (1987), 239-263. | MR | Zbl
,[227] Mathematical models of solid-solid phase transformations in steel, I.M.A. J. Appl. Math., 39 (1987), 143-157. | MR | Zbl
,[228] The Stefan problem with surface tension, in: Mathematical Models of Phase Change Problems (J. F. RODRIGUES, ed.). Birkhäuser, Basel (1989), pp. 191-213. | MR | Zbl
,[229] Remarks on the Stefan problem with surface tension, in: Boundary Value Problems for Partial Differential Equations and Applications (C. BAIOCCHI - J. L. LIONS, eds.). Dunod, Paris (1993). | MR | Zbl
,[230] Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer, Heidelberg (1994).
,[231] Two-scale Stefan problem with surface tension, in: Nonlinear Analysis and Applications (N. KENMOCHI - M. NIEZGÓDKA - P. STRZELECKI, eds.), Gakkotosho, Tokyo (1996), pp. 405-424. | MR | Zbl
,[232] Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. | MR | Zbl
,[233] Models of Phase Transitions, Birkhäuser, Boston (1996). | MR | Zbl
,[234] Nucleation and mean curvature flow, Comm. in P.D.E.s (to appear). | MR | Zbl
,[235] Stefan Problem with nucleation and mean curvature flow, in preparation.
,[236] Motion by mean curvature flow and nucleation, C. R. Acad. Sc. Paris, Serie I, 325 (1997), 55-60. | MR | Zbl
,[237] Progress with simple binary alloy solidification problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston 1983, pp. 306-320. | MR | Zbl
- - ,[238] D. G. WILSON - A. D. SOLOMON - P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York (1978). | MR | Zbl
[239] A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory (1979).
- - ,[240] The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge (1973).
,[241] Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. | MR | Zbl
,