Introduction to the models of phase transitions
Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 1-47.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Le transizioni di fase si presentano in svariati processi fisici: un esempio tipico è la transizione solido-liquido. Il classico modello matematico, noto come problema di Stefan, tiene conto solo dello scambio del calore latente e della diffusione termica nelle fasi. Si tratta di un problema di frontiera libera, poiché l'evoluzione dell'interfaccia solido liquido è una delle incognite. In questo articolo si rivedono le formulazioni forte e debole di tale problema, e quindi si considerano alcune generalizzazioni fisicamente motivate. In particolare si presenta un modello su scala mesoscopica per la tensione superficiale, il superraffreddamento e la nucleazione.
@article{BUMI_1998_8_1B_1_a1,
     author = {Visintin, A.},
     title = {Introduction to the models of phase transitions},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--47},
     publisher = {mathdoc},
     volume = {Ser. 8, 1B},
     number = {1},
     year = {1998},
     zbl = {0903.35097},
     mrnumber = {420406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/}
}
TY  - JOUR
AU  - Visintin, A.
TI  - Introduction to the models of phase transitions
JO  - Bollettino della Unione matematica italiana
PY  - 1998
SP  - 1
EP  - 47
VL  - 1B
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/
LA  - en
ID  - BUMI_1998_8_1B_1_a1
ER  - 
%0 Journal Article
%A Visintin, A.
%T Introduction to the models of phase transitions
%J Bollettino della Unione matematica italiana
%D 1998
%P 1-47
%V 1B
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/
%G en
%F BUMI_1998_8_1B_1_a1
Visintin, A. Introduction to the models of phase transitions. Bollettino della Unione matematica italiana, Série 8, 1B (1998) no. 1, pp. 1-47. http://geodesic.mathdoc.fr/item/BUMI_1998_8_1B_1_a1/

[1] F. F. Abraham , Homogeneous Nucleation Theory, Academic Press, New York (1974).

[2] V. Alexiades - A. D. Solomon , Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC (1993).

[3] S. M. Allen - J. W. Cahn , A microscopic theory for antiphase motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095.

[4] F. Almgren , Existence and Regularity Almost Everywhere of Elliptic Variational Problems with Constraints, Memoirs A.M.S., 165 (1976). | MR | Zbl

[5] F. Almgren - J. E. Taylor - L. Wang , Curvature-driven flows: a variational approach, S.I.A.M. J. Contr. Optimiz., 31 (1993), 387-437. | MR | Zbl

[6] F. Almgren - L. Wang , Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, J. Geom. Anal. (to appear). | MR | Zbl

[7] H. W. Alt - L. Caffarelli , Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR | Zbl

[8] H. W. Alt - I. Pawlow , A mathematical model of dynamics of non-isothermal phase separation, Physica D, 59 (1992), 389-416 | MR | Zbl

[9] I. Athanassopoulos - L.A. Caffarelli - S. Salsa , Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434 | MR | Zbl

[10] I. Athanassopoulos - L. A. Caffarelli - S. Salsa , Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). | Zbl

[11] I. Athanassopoulos - L. A. Caffarelli - S. Salsa , Degenerate phase transition problems of parabolic type: smoothness of the front, Preprint, Princeton (1996). | Zbl

[12] D. R. Atthey , A finite difference scheme for melting problems, J. Inst. Math. Appl., 13 (1974), 353-366. | MR

[13] C. Baiocchi , Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. | MR | Zbl

[14] C. Baiocchi - A. Capelo , Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester (1983). | MR | Zbl

[15] G. Barles , Remark on a flame propagation model, Rapport I.N.R.I.A., 464 (1985).

[16] Ph. Bénilan , Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972).

[17] A. E. Berger - H. Brézis - J. W. Rogers , A numerical method for solving the problem $u_t - \Delta f(u) = 0$, R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. | fulltext mini-dml | MR | Zbl

[18] A. E. Berger - J. W. Rogers , Some properties of the nonlinear semigroup for the problem $u_t - \Delta f(u) = 0$, Nonlinear Analysis, T.M.A., 8 (1984), 909-939. | MR | Zbl

[19] A. Bermudez - C. Saguez , Mathematical formulation and numerical solution of an alloy solidification problem, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 237-247. | Zbl

[20] A. Beurling , On free boundary problems for the Laplace equation, Advanced Study Seminars, 1 (1957), 248-263. | Zbl

[21] J. F. Blowey - C. M. Elliott , The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy, Euro J. App. Math., 2 (1991), 233-280. | MR | Zbl

[22] A. Bossavit , Stefan models for eddy currents in steel, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 349-364. | Zbl

[23] A. Bossavit , Free boundaries in induction heating, Control Cybernetics, 14 (1985), 69-96. | Zbl

[24] A. Bossavit , Mixed methods for a vectorial Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN - J. SPREKELS, eds.), Longman, Harlow (1990), pp. 25-37. | MR | Zbl

[25] A. Bossavit , Électromagnétisme, en vue de la modélisation, Springer, Paris (1993). | MR | Zbl

[26] A. Bossavit - A. Damlamian , Homogenization of the Stefan problem and application to composite magnetic media, I.M.A. J. Appl. Math., 27 (1981), 319-334. | MR | Zbl

[27] A. Bossavit - A. Damlamian - M. Fre ?Mond (Eds.) , Free Boundary Problems: Theory and Applications, Pitman, Boston (1985).

[28] A. Bossavit - J. C. Vérité , A mixed FEM-BIEM method to solve eddy currents problems, I.E.E.E. Trans. Magn. MAG-18 (1982), 431-435.

[29] K. A. Brakke , The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton (1978). | MR | Zbl

[30] H. Brézis , On some degenerate nonlinear parabolic equations, in: Nonlinear Functional Analysis (F. E. BROWDER, ed.). Proc. Symp. Pure Math., XVIII. A.M.S., Providence (1970), pp. 28-38. | MR | Zbl

[31] H. Brézis , Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam (1973). | MR | Zbl

[32] J. C. Brice , The Growth of Crystals from Liquids, North-Holland, Amsterdam (1973).

[33] M. Brokate - J. Sprekels , Hysteresis and Phase Transitions, Springer, Heidelberg (1996). | MR | Zbl

[34] G. BUTTAZZO - A. VISINTIN (eds.), Motion by Mean Curvature and Related Topics, De Gruyter, Berlin (1994). | MR | Zbl

[35] L. A. Caffarelli , The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. | MR | Zbl

[36] L. A. Caffarelli , Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. | MR | Zbl

[37] L. A. Caffarelli - L. C. Evans , Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. | MR | Zbl

[38] L. A. Caffarelli - A. Friedman , Continuity of the temperature in the Stefan prob- lem, Indiana Univ. Math. J., 28 (1979), 53-70. | MR | Zbl

[39] G. Caginalp , An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. | MR | Zbl

[40] G. Caginalp , Stefan and Hele-Shaw type models as asymptotic limits of phase field equations,, Pys. Rev. A, 39 (1989), 5887-5896. | MR | Zbl

[41] G. Caginalp , The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, I.M.A. J. Appl. Math., 44 (1990), 77-94. | MR | Zbl

[42] G. Caginalp - W. Xie , Phase field and sharp-interface alloy models, Phys. Rev. E, 48 (1993), 1897-1909 | MR

[43] J. W. Cahn , Theory of crystal growth and interface motion in crystalline materials, Acta Metall., 8 (1960), 554-562.

[44] J. W. Cahn , On spinodal decomposition, Acta Metall., 9 (1961), 795-801.

[45] J. W. Cahn - J. E. Hilliard , Free energy of a nonuniform system. I. Interfacial free energy. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 28 (1957), 258-267; 31 (1959), 688-699.

[46] J. W. Cahn - J. E. Taylor , Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063.

[47] J. R. Cannon , The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park (1984). | MR | Zbl

[48] J. R. Cannon - E. Dibenedetto , The steady state Stefan problem with convection, with mixed temperature and non-linear heat flux boundary conditions, in: Free Boundary Problems (E. MAGENES, ed.), Istituto di Alta Matematica, Roma (1980), pp. 231-266. | MR | Zbl

[49] J. R. Cannon - C. D. Hill , On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. | MR | Zbl

[50] J. M. CHADAM - H. RASMUSSEN (eds.), Emerging Applications in Free Boundary Problems, Longman, Harlow (1993). | MR

[51] J. M. CHADAM - H. RASMUSSEN (eds.) Free Boundary Problems Involving Solids, Longman, Harlow (1993). | MR

[52] J. M. CHADAM - H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow (1993). | MR

[53] B. Chalmers , Principles of Solidification, Wiley, New York (1964).

[54] X. Chen - F. Reitich , Local existence and uniqueness of solutions of the Stefan prob- lem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 154 (1992), 350-362. | MR | Zbl

[55] Y. G. Chen - Y. Giga - S. Goto , Uniqueness and existence of viscosity solutions of generalized solutions of mean curvature flow equation, J. Diff. Geom., 33 (1991), 749-786. | fulltext mini-dml | MR | Zbl

[56] J. W. Christian , The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London (1975).

[57] P. Colli - G. Gilardi - M. Grasselli , Weak solution to hyperbolic Stefan problems with memory, No.D.E.A. (to appear). | MR | Zbl

[58] P. Colli - G. Gilardi - M. Grasselli , Global smooth solution to the standard phase-field model with memory, Adv. Diff. Eqs. (to appear). | MR | Zbl

[59] P. Colli - G. Gilardi - M. Grasselli , Asymptotic analysis of a phase field model with memory for vanishing time relaxation, Preprint, Dipartimento di Matematica dell'Università di Torino (1995). | MR | Zbl

[60] P. Colli - M. Grasselli , Hyperbolic phase change problems in heat conduction with memory, Proc. Roy. Soc. Edingurgh A, 123 (1993), 571-592. | MR | Zbl

[61] P. Colli - J. Sprekels , On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl., 169 (1995), 269-289. | MR | Zbl

[62] P. Colli - J. Sprekels , Stefan problems and the Penrose-Fife phase field model, Adv. Math. Sci. Appl. (to appear). | MR | Zbl

[63] J. Crank , Free and Moving Boundary Problems, Clarendon Press, Oxford (1984). | MR | Zbl

[64] J. Crank - J. R. Ockendon , Proceedings of an I.M.A. Conference on Crystal Growth, I.M.A. J. of Appl. Math., 35 (1985) 115-264.

[65] A. B. Crowley , Numerical solution of alloy solidification problem revisited, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 122-131. | Zbl

[66] A. B. Crowley - J. R. Ockendon , On the numerical solution of an alloy solidification problem, Int. J. Heat Mass Transfer, 22 (1979), 941-947.

[67] C. W. Cryer , A Bibliography of Free Boundary Problems, M.R.C. Rep. No. 1793, Math. Res. Cent., Univ. of Wisconsin (1977).

[68] A. Damlamian , Some results on the multi-phase Stefan problem, Comm. in P.D.E.s, 2 (1977), 1017-1044. | MR | Zbl

[69] A. Damlamian , Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. | Zbl

[70] A. Damlamian , Asymptotic behavior of solutions to a multi-phase Stefan problem, in: Free Boundary Problems: Theory and Applications (K.-H. HOFFMANN and J. SPREKELS, eds.), Longman, Harlow (1990), pp. 811-817. | Zbl

[71] A. Damlamian - N. Kenmochi , Asymptotic behavior of solutions to a multi-phase Stefan problem, Japan J. Appl. Math., 3 (1986), 15-36. | MR | Zbl

[72] A. Damlamian - N. Kenmochi , Periodicity and almost periodicity of the solutions to a multi-phase Stefan problem, Nonlinear Analysis, T.M.A., 12 (1988), 921-934. | MR | Zbl

[73] A. DAMLAMIAN - J. SPRUCK - A. VISINTIN (eds.), Curvature Flows and Related Topics, Gakkotosho, Tokyo (1995). | MR

[74] I. I. Danilyuk , On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. | MR | Zbl

[75] J. I. DIAZ - M. A. HERRERO - A. LIÑÁN - J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1995). | MR

[76] E. Dibenedetto , Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. | MR | Zbl

[77] E. Dibenedetto , Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. | MR | Zbl

[78] E. Dibenedetto - A. Friedman , The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. A.M.S., 282 (1984), 183-204. | MR | Zbl

[79] E. Dibenedetto - A. Friedman , Conduction-convection problems with change of phase, J. Diff. Eqs., 62 (1986), 129-185. | MR | Zbl

[80] E. Dibenedetto - V. Vespri , On the singular equation $\beta(u)_t = \Delta u$, Arch. Rat. Mech. Anal., 132 (1995), 247-309. | MR | Zbl

[81] R. Dobrushin - R. Kotecký - S. Shlosman , Wulff Construction. A Global Shape from Local Interaction, A.M.S., Providence (1992). | MR | Zbl

[82] J. D. P. Donnelly , A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. | MR | Zbl

[83] R. H. Doremus , Rates of Phase Transformations, Academic Press, Orlando (1985).

[84] G. Duvaut , Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. | MR | Zbl

[85] G. Duvaut , The solution of a two-phase Stefan by a variational inequality, in: Moving Boundary Problems in Heat Flow and Diffusion (J. R. OCKENDON - W. R. HODGKINS, eds.), Clarendon Press, Oxford (1975), pp. 173-181.

[86] C. M. Elliott , On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Maths. Applics., 25 (1980), 121-131. | MR | Zbl

[87] C. M. Elliott , The Cahn-Hilliard model for the kinetics of phase separation, in: Mathematical Models for Phase Change Problems (J.-F. RODRIGUES, ed.), Birkhäuser, Basel (1989), pp. 35-73. | MR | Zbl

[88] C. M. Elliott - V. Janovsky , A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg, 88A (1981), 93-107. | MR | Zbl

[89] C. M. Elliott - J. R. Ockendon , Weak and Variational Methods for Moving Boundary Problems, Pitman, Boston (1982). | MR | Zbl

[90] C. M. Elliott - S. Zheng , On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357. | MR | Zbl

[91] G. W. Evans , A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. | Zbl

[92] L. C. Evans - M. Soner - P. E. Souganidis , Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123. | MR | Zbl

[93] L. C. Evans - J. Spruck , Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681. | fulltext mini-dml | MR | Zbl

[94] A. Fasano , Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario (1987). | MR | Zbl

[95] A. Fasano - M. Primicerio , General free boundary problems for the heat equation, J. Math. Anal. Appl., I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. | Zbl

[96] A. Fasano - M. Primicerio , Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. | MR | Zbl

[97] A. FASANO - M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston (1983). | MR | Zbl

[98] A. Fasano - M. Primicerio , Freezing in porous media: a review of mathematical models, Proc. German-Italian Symp. (V. BOFFI - H. NEUNZERT, eds.), Teubner (1984), pp. 288-311. | MR | Zbl

[99] A. Fasano - M. Primicerio , Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. | MR | Zbl

[100] A. Fasano - M. Primicerio , Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. | MR | Zbl

[101] A. Fasano - M. Primicerio , A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. | MR | Zbl

[102] A. Fasano - M. Primicerio - S. Kamin , Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. | MR | Zbl

[103] G. Fix , Numerical methods for alloy solidification, in: Moving Boundary Problems (D. G. WILSON - A. D. SOLOMON - P. T. BOGGS, eds.) Academic Press, New York (1978), pp. 109-128. | MR | Zbl

[104] G. Fix , Numerical simulation of free boundary problems using phase field methods, in: The Mathematics of Finite Element and Applications (J. R. WHITEMAN, ed.), Academic Press, London (1982). | Zbl

[105] G. Fix , Phase field methods for free boundary problems, in: Free Boundary Problems, Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 580-589. | Zbl

[106] M. C. Flemings , Solidification Processing, McGraw-Hill, New York (1973).

[107] M. Frémond , Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, in: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. ODEN, ed.), University of Texas, Austin (1974), pp. 341-349. | MR | Zbl

[108] M. Frémond - A. Visintin , Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C.R. Acad. Sci. Paris, Série II, 301 (1985), 1265-1268. | MR | Zbl

[109] A. Friedman , Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. | Zbl

[110] A. Friedman , Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964). | MR | Zbl

[111] A. Friedman , The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. | MR | Zbl

[112] A. Friedman , One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. | MR | Zbl

[113] A. Friedman , Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. | MR | Zbl

[114] A. Friedman , Variational Principles and Free Boundary Problems, Wiley, New York (1982). | MR | Zbl

[115] A. FRIEDMAN (ed.), Mathematics in Industrial Problems, Parts 1 - 6, Springer, New York (1988-1993). | MR | Zbl

[116] A. Friedman - D. Kinderlehrer , A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. | MR | Zbl

[117] A. FRIEDMAN - J. SPRUCK (eds.), Variational and Free Boundary Problems, Springer, New York (1993). | MR | Zbl

[118] M. Gage , An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 1225-1229. | fulltext mini-dml | MR | Zbl

[119] I.G. Götz - M. Primicerio , Spherically symmetrical Stefan problem with the Gibbs-Thomdon law at the moving boundary, Euro. J. Appl. Math., 7 (1996), 249-275. | MR | Zbl

[120] I. G. Götz - B. B. Zaltzman , Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. | MR | Zbl

[121] M. Grayson , The heat equation shrinks embedded plane curves to points, J. Diff. Geom., 26 (1987), 285-314. | fulltext mini-dml | MR | Zbl

[122] M. E. Gurtin , On a theory of phase transitions with interfacial energy, Arch. Rational Mech. Anal., 87 (1985), 187-212. | MR

[123] M. E. Gurtin , On the two-phase Stefan problem with interfacial energy and entropy, Arch. Rat. Mech. Anal., 96 (1986), 199-241. | MR | Zbl

[124] M. E. Gurtin , Toward a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal., 100 (1988), 275-312. | MR | Zbl

[125] M. E. Gurtin , Multiphase thermomechanics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal., 104 (1988), 195-221. | MR | Zbl

[126] M. E. Gurtin , On diffusion in two-phase systems: the sharp interface versus the transition layer, in: P.D.E.s and Continuum Models of Phase Transitions (M. RASCLE - D. SERRE - M. SLEMROD, eds.), Springer, Heidelberg (1989), pp. 99-112. | MR | Zbl

[127] M. E. Gurtin , On thermomechanical laws for the motion of a phase interface, Zeit. Angew. Math. Phys., 42 (1991), 370-388. | MR | Zbl

[128] M. E. Gurtin , Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford (1993). | MR | Zbl

[129] M. E. Gurtin , The dynamics of solid-solid phase transitions. 1. Coherent interfaces, Arch. Rational Mech. Anal., 123 (1993), 305-335. | MR | Zbl

[130] M. E. Gurtin , Thermodynamics and supercritical Stefan equations with nucleations, Quart. Appl. Math., LII (1994), 133-155. | MR | Zbl

[131] M. E. GURTIN - G. MCFADDEN (eds.), On the Evolution of Phase Boundaries, Springer, New York (1991). | MR | Zbl

[132] M. E. Gurtin - H. M. Soner , Some remarks on the Stefan problem with surface structure, Quart. Appl. Math., L (1992), 291-303. | MR | Zbl

[133] E.-I. Hanzawa , Classical solution of the Stefan problem, Tohoku Math., 33 (1981), 297-335. | fulltext mini-dml | MR | Zbl

[134] J. M. Hill , One-Dimensional Stefan Problem: An Introduction, Longman, Harlow (1987). | MR | Zbl

[135] P. C. Hohenberg - B. I. Halperin , Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.

[136] K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1990). | Zbl

[137] K.-H. HOFFMANN - J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston (1990). | MR | Zbl

[138] D. Hömberg , A mathematical model for the phase transitions in eutectoid carbon steel, I.M.A. J. Appl. Math., 54 (1995), 31-57. | MR | Zbl

[139] G. Huisken , Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266. | fulltext mini-dml | MR | Zbl

[140] T. Ilmanen , Elliptic regularization and partial regularity for motion by mean curvature, Memoirs A.M.S., 520 (1994). | MR | Zbl

[141] L. S. Jiang , The two-phase Stefan problem. I, II, Chinese Math. 4 (1963), 686-702; 5 (1964), 36-53. | Zbl

[142] S. Kamenomostskaya , On the Stefan problem, Math. Sbornik, 53 (1961) 489-514 (Russian). | Zbl

[143] N. Kenmochi , Systems of nonlinear P.D.E.s arising from dynamical phase transitions, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.), Springer, Heidelberg (1994), pp. 39-86. | MR | Zbl

[144] N. Kenmochi - M. Niezgódka , Viscosity approach to modelling non-isothermal diffusive phase separation, Japan J. Indust. Appl. Math., 13 (1996), 135-16. | MR | Zbl

[145] D. Kinderlehrer - L. Nirenberg , Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. | fulltext mini-dml | MR | Zbl

[146] D. Kinderlehrer - L. Nirenberg , The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. | MR | Zbl

[147] D. Kinderlehrer - G. Stampacchia , An Introduction to Variational Inequalities and their Applications, Academic Press, New York (1980). | MR | Zbl

[148] I. I. Kolodner , Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. | Zbl

[149] W. Kurz - D. J. Fisher , Fundamentals of Solidification, Trans Tech, Aedermannsdorf (1989).

[150] G. Lamé - B. P. Clayperon , Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.

[151] J. S. Langer , Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52 (1980), 1-28.

[152] J. L. Lions , Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). | MR | Zbl

[153] S. Luckhaus , Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. | MR | Zbl

[154] S. Luckhaus , Solidification of alloys and the Gibbs-Thomson law, Preprint (1994).

[155] S. Luckhaus - L. Modica , The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. | MR | Zbl

[156] S. Luckhaus - T. Sturzenhecker , Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. | MR | Zbl

[157] S. Luckhaus - A. Visintin , Phase transition in a multicomponent system, Manuscripta Math., 43 (1983), 261-288. | MR | Zbl

[158] E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma (1980).

[159] E. Magenes , Problemi di Stefan bifase in più variabili spaziali, Le Matematiche, 36 (1981), 65-108. | MR | Zbl

[160] U. Massari - L. Pepe , Su di una impostazione parametrica del problema dei capillari, Ann. Univ. Ferrara, 20 (1974), 21-31. | MR | Zbl

[161] J. A. Mcgeough , Principles of Electrochemical Machining, Chapman and Hall, London (1974).

[162] J. A. Mcgeough - H. Rasmussen , On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Maths. Applics., 13 (1974), 13-21.

[163] A. M. Meirmanov , On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. | Zbl

[164] A. M. Meirmanov , On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. USSR.-Sbornik, 40 (1981), 157-178. | Zbl

[165] A. M. Meirmanov , An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. | MR | Zbl

[166] A. M. Meirmanov , The Stefan Problem, De Gruyter, Berlin (1992) (Russian edition: Nauka, Novosibirsk (1986)). | MR | Zbl

[167] A. M. Meirmanov , The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution, Euro J. Appl. Math., 5 (1994), 1-20. | MR | Zbl

[168] L. Modica , Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré. Anal. Nonlin., 4 (1987), 487-512. | fulltext mini-dml | MR | Zbl

[169] L. Modica , Gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 123-142. | MR | Zbl

[170] W. W. Mullins - R. F. Sekerka , Morphological stability of a particle growing by diffusion and heat flow, J. Appl. Phys., 34 (1963), 323-329.

[171] W. W. Mullins - R. F. Sekerka , Stability of a planar interface during solidification of a dilute alloy, J. Appl. Phys., 35 (1964), 441-451.

[172] M. Niezgódka , Stefan-like problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 321-347. | MR | Zbl

[173] M. NIEZGÓDKA (ed.), Free Boundary Problems: Theory and Applications, Gakkotosho, Tokyo (to appear). | MR

[174] A. Novick-Cohen - L. A. Segel , Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 278-298. | MR

[175] J. R. OCKENDON - W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975). | Zbl

[176] O. A. Oleĭnik , A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. | MR | Zbl

[177] O. A. Oleĭnik - M. Primicerio - E. V. Radkevich , Stefan-like problems, Meccanica, 28 (1993), 129-143. | Zbl

[178] S. Osher - J. A. Sethian , Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. | MR | Zbl

[179] R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford (1975).

[180] O. Penrose - P. C. Fife , Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. | MR | Zbl

[181] O. Penrose - P. C. Fife , On the relation between the standard phase-field model and a «thermodynamically consistent» phase-field model, Physica D, 69 (1993), 107-113. | MR | Zbl

[182] P. I. Plotnikov - V. N. Starovoitov , The Stefan problem with surface tension as a limit of phase field model, Diff. Eqs., 29 (1993), 395-404. | MR | Zbl

[183] I. Prigogine , Thermodynamics of Irreversible Processes, Wiley-Interscience, New York (1967). | Zbl

[184] M. Primicerio , Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univ. Politecn. Torino, 32 (1973-74), 183-206. | MR | Zbl

[185] M. Primicerio , Problemi di diffusione a frontiera libera, Boll. Un. Mat. Ital., 18-A (1981), 11-68. | Zbl

[186] M. Primicerio , Mushy regions in phase-change problems, in: Applied Functional Analysis (R. GORENFLO - K.-H. HOFFMANN, eds.), Lang, Frankfurt (1983), pp. 251-269. | MR | Zbl

[187] E. Radkevitch , Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem, Soviet Dokl. Acad. Sci., 43 (1991), 274-278. | Zbl

[188] S. Richardson , Hele-Shaw flow with a free boundary produced by the injections of a fluid into a narrow channel, J. Fluid. Mech., 56 (1972), 609-618. | Zbl

[189] S. Richardson , Some Hele-Shaw flow with time-dependent free boundaries, J. Fluid. Mech., 102 (1981), 263-278. | MR | Zbl

[190] J.-F. Rodrigues , An evolutionary continuous casting problem of Stefan type, Quart. Appl. Math., XLIV (1986), 109-131. | MR | Zbl

[191] J.-F. Rodrigues , Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam (1987). | MR | Zbl

[192] J.-F. Rodrigues , The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math., 8 (1987), 1-35. | MR | Zbl

[193] J.-F. Rodrigues (Ed.) , Mathematical Models for Phase Change Problems, Birkhäuser, Basel (1989). | MR | Zbl

[194] J.-F. Rodrigues , Variational methods in the Stefan problem, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena (A. VISINTIN, ed.). Springer, Heidelberg (1994), pp. 147-212. | MR | Zbl

[195] A. Romano , Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore (1993). | MR | Zbl

[196] L. Rubinstein , On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. | MR | Zbl

[197] L. Rubinstein , The Stefan Problem, A.M.S., Providence (1971) (Russian edition: Zvaigzne, Riga (1967)). | MR | Zbl

[198] L. Rubinstein , On mathematical modelling of growth of an individual monocomponent crystal from melt in a non-uniform temperature field, Control and Cybernetics, 12 (1983), 5-18. | MR | Zbl

[199] L. Rubinstein , On mathematical models of solid-liquid zones in two phase mono- component system and in binary alloys, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston (1983), pp. 275-282. | Zbl

[200] L. Rubinstein , Mathematical modelling of growth of an individual monocomponent crystal from its melt in a non-homogeneous temperature field, in: Free Boundary Problems: Theory and Applications (A. BOSSAVIT - A. DAMLAMIAN - M. FRÉMOND, eds.), Pitman, Boston (1985), pp. 166-178. | MR | Zbl

[201] L. Rubinstein - A. Fasano - M. Primicerio , Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. | MR | Zbl

[202] P. G. Saffman - G. I. Taylor , The penetration of fluid into a porous medium or Hele-Shaw cell, Proc. Roy. Soc. London Ser. A, 245 (1958), 312-329. | MR | Zbl

[203] D. Schaeffer , A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eqs., 20 (1976), 266-269. | MR | Zbl

[204] G. Sestini , Esistenza di una soluzione in problemi analoghi a quello di Stefan, Riv. Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. | Zbl

[205] J. A. Sethian , Curvature and evolution of fronts, Comm. Math. Phys., 101 (1985), 487-499. | fulltext mini-dml | MR | Zbl

[206] R. E. Showalter , Mathematical formulation of the Stefan problem, Int. J. Eng. Sci., 20 (1982), 909-912. | MR | Zbl

[207] R. E. Showalter - N. J. Walkington , A hyperbolic Stefan problem, Quart. Appl. Math., XLV (1987), 769-781. | MR | Zbl

[208] V. P. Skripov , Metastable Liquids, Wiley, Chichester (1974).

[209] M. Soner , Convergence of the phase-field equation to the Mullins-Sekerka problem with kinetic undercooling, Arch. Rational Mech. Anal., 131 (1995), 139-197. | MR | Zbl

[210] J. Sprekels - S. Zheng , Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., 176 (1993), 200-223. | MR | Zbl

[211] J. Stefan , Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.

[212] F. Talamucci , Analysis of coupled heat-mass transport in freezing porous soils, Surveys for Mathematics in Industry, to appear. | Zbl

[213] D. A. Tarzia , Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema de Stefan, Math. Notae, 29 (1981/82), 147-241. | Zbl

[214] D. A. Tarzia , The Two-Phase Stefan Problem and Some Related Conduction Problems, S.B.M.A.C., Gramado (1987). | Zbl

[215] D. A. Tarzia , A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Prog. Naz. M.P.I. Ital., Firenze (1988). | MR | Zbl

[216] J. E. Taylor , Mean curvature and weighted mean curvature, Acta Metall. Mater., 40 (1992), 1475-1485.

[217] J. E. Taylor - J. W. Cahn , Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. | MR | Zbl

[218] D. Turnbull , Phase Changes, Solid State Phys., 3 (1956), 225-306.

[219] A. R. Ubbelohde , The Molten State of Matter, Wiley, Chichester (1978).

[220] C. Verdi - A. Visintin , A mathematical model of the austenite-pearlite transformation in plain steel based on the Scheil additivity rule, Acta Metall., 35 (1987), 2711-2717.

[221] A. Visintin , Stefan problem with phase relaxation, I.M.A. J. Appl. Math., 34 (1985), 225-245. | MR | Zbl

[222] A. Visintin , Study of the eddy-current problem taking account of Hall's effect, App. Anal., 19 (1985), 217-226. | MR | Zbl

[223] A. Visintin , A new model for supercooling and superheating effects, I.M.A. J. Appl. Math., 36 (1986), 141-157. | MR | Zbl

[224] A. Visintin , Stefan problem with a kinetic condition at the free boundary, Ann. Mat. Pura Appl., 146 (1987), 97-122. | MR | Zbl

[225] A. Visintin , Coupled thermal and electromagnetic evolution in a ferromagnetic body, Z. Angew. Math. Mech., 67 (1987), 409-417. | MR | Zbl

[226] A. Visintin , Supercooling and superheating effects in heterogeneous systems, Quart. Appl. Math., XLV (1987), 239-263. | MR | Zbl

[227] A. Visintin , Mathematical models of solid-solid phase transformations in steel, I.M.A. J. Appl. Math., 39 (1987), 143-157. | MR | Zbl

[228] A. Visintin , The Stefan problem with surface tension, in: Mathematical Models of Phase Change Problems (J. F. RODRIGUES, ed.). Birkhäuser, Basel (1989), pp. 191-213. | MR | Zbl

[229] A. Visintin , Remarks on the Stefan problem with surface tension, in: Boundary Value Problems for Partial Differential Equations and Applications (C. BAIOCCHI - J. L. LIONS, eds.). Dunod, Paris (1993). | MR | Zbl

[230] A. Visintin (Ed.) , Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer, Heidelberg (1994).

[231] A. Visintin , Two-scale Stefan problem with surface tension, in: Nonlinear Analysis and Applications (N. KENMOCHI - M. NIEZGÓDKA - P. STRZELECKI, eds.), Gakkotosho, Tokyo (1996), pp. 405-424. | MR | Zbl

[232] A. Visintin , Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. | MR | Zbl

[233] A. Visintin , Models of Phase Transitions, Birkhäuser, Boston (1996). | MR | Zbl

[234] A. Visintin , Nucleation and mean curvature flow, Comm. in P.D.E.s (to appear). | MR | Zbl

[235] A. Visintin , Stefan Problem with nucleation and mean curvature flow, in preparation.

[236] A. Visintin , Motion by mean curvature flow and nucleation, C. R. Acad. Sc. Paris, Serie I, 325 (1997), 55-60. | MR | Zbl

[237] D. G. Wilson - A. D. Solomon - V. Alexiades , Progress with simple binary alloy solidification problems, in: Free Boundary Problems: Theory and Applications (A. FASANO - M. PRIMICERIO, eds.), Pitman, Boston 1983, pp. 306-320. | MR | Zbl

[238] D. G. WILSON - A. D. SOLOMON - P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York (1978). | MR | Zbl

[239] D. G. Wilson - A. D. Solomon - J. S. Trent , A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory (1979).

[240] P. D. Woodruff , The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge (1973).

[241] W. P. Ziemer , Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. | MR | Zbl