Geometric stability of the cotangent bundle and the universal cover of a projective manifold
[Stabilité géométrique du fibré cotangent et du recouvrement universel d'une variété projective]
Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 1, pp. 41-74

Voir la notice de l'article provenant de la source Numdam

We first prove a strengthening of Miyaoka’s generic semi-positivity theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled complex projective manifold X have a pseudo-effective (instead of generically nef) determinant. A first consequence is that X is of general type if its cotangent bundle contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that if the universal cover of X is not covered by compact positive-dimensional analytic subsets, then X is of general type if χ(O X )0. We finally show that if L is a numerically trivial line bundle on X, and if K X +L is -effective, then so is K X itself. The proof of this result rests on Simpson’s work on jumping loci of numerically trivial line bundles, and Viehweg’s cyclic covers. This last result is central, and has been recently extended, using the very same ingredients, to the case of log-canonical pairs.

Nous établissons tout d’abord un renforcement du théorème de semi-positivité de Miyaoka : le déterminant de tout quotient de toute puissance tensorielle du fibré cotangent d’une variété projective X non-uniréglée est pseudo-effectif (au lieu de : génériquement nef). Une première conséquence est que X est de type général si son fibré cotangent a un sous-faisceau dont le déterminant est ‘big’. Parmi diverses applications, nous montrons que si le revêtement universel de X n’est pas recouvert par des sous-ensembles analytiques compacts de dimension strictement positive, alors X est de type général si χ(O X )0.Nous montrons enfin que K X est -effectif si K X +L l’est, pour un fibré en droites numériqiuement effectif L sur X. La démonstration de ce résultat central repose sur les travaux de C. Simpson sur les lieux de Green-Lazarsfeld, et sur les revêtements cycliques de Viehweg. Ce résultat a été récemment étendu aux paires ’Log-canoniques’ en utilisant les mêmes ingrédients.

DOI : 10.24033/bsmf.2599
Classification : 14J40, 32Q26, 32J27, 14E30
Keywords: bundle, pseudo-effective line bundle, Moishezon-Iitaka-‘Kodaira' dimension, universal cover, uniruledness
Mots-clés : fibré stable, fibré en droites pseudo-effectif, dimension de Moishezon-Iitaka-‘Kodaira', revêtement universel, variété uniréglée
@article{BSMF_2011__139_1_41_0,
     author = {Campana, Fr\'ed\'eric and Peternell, Thomas},
     title = {Geometric stability of the cotangent bundle and the universal cover of a projective manifold},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {41--74},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {139},
     number = {1},
     year = {2011},
     doi = {10.24033/bsmf.2599},
     mrnumber = {2815027},
     zbl = {1218.14030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2599/}
}
TY  - JOUR
AU  - Campana, Frédéric
AU  - Peternell, Thomas
TI  - Geometric stability of the cotangent bundle and the universal cover of a projective manifold
JO  - Bulletin de la Société Mathématique de France
PY  - 2011
SP  - 41
EP  - 74
VL  - 139
IS  - 1
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2599/
DO  - 10.24033/bsmf.2599
LA  - en
ID  - BSMF_2011__139_1_41_0
ER  - 
%0 Journal Article
%A Campana, Frédéric
%A Peternell, Thomas
%T Geometric stability of the cotangent bundle and the universal cover of a projective manifold
%J Bulletin de la Société Mathématique de France
%D 2011
%P 41-74
%V 139
%N 1
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2599/
%R 10.24033/bsmf.2599
%G en
%F BSMF_2011__139_1_41_0
Campana, Frédéric; Peternell, Thomas. Geometric stability of the cotangent bundle and the universal cover of a projective manifold. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 1, pp. 41-74. doi: 10.24033/bsmf.2599

Cité par Sources :