Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2024_53_2_a4, author = {Orlandelli, Eugenio and Tesi, Matteo}, title = {A {Syntactic} {Proof} of the {Decidability} of {First-Order} {Monadic} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {223--244}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a4/} }
TY - JOUR AU - Orlandelli, Eugenio AU - Tesi, Matteo TI - A Syntactic Proof of the Decidability of First-Order Monadic Logic JO - Bulletin of the Section of Logic PY - 2024 SP - 223 EP - 244 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a4/ LA - en ID - BSL_2024_53_2_a4 ER -
Orlandelli, Eugenio; Tesi, Matteo. A Syntactic Proof of the Decidability of First-Order Monadic Logic. Bulletin of the Section of Logic, Tome 53 (2024) no. 2, pp. 223-244. http://geodesic.mathdoc.fr/item/BSL_2024_53_2_a4/
[1] G. S. Boolos, J. P. Burgess, R. C. Jeffrey, Computability and Logic, 5th ed., Cambridge University Press, Cambridge (2007) | DOI
[2] T. Bräuner, A cut-free Gentzen formulation of the modal logic S5, Logic Journal of the IGPL, vol. 8(5) (2000), pp. 629–643 | DOI
[3] A. Church, A note on the Entscheidungsproblem, The Journal of Symbolic Logic, vol. 1(1) (1936), p. 40–41 | DOI
[4] H. R. Lewis, Complexity results for classes of quantificational formulas, Journal of Computer and System Sciences, vol. 21(3) (1980), pp. 317–353 | DOI
[5] C. Liang, D. Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theoretical Computer Science, vol. 410(46) (2009), pp. 4747–4768, special issue: Abstract Interpretation and Logic Programming: In honor of professor Giorgio Levi. | DOI
[6] L. Löwenheim, Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76 (1915), pp. 447–470 | DOI
[7] W. V. Quine, On the logic of quantification, The Journal of Symbolic Logic, vol. 10(1) (1945), p. 1–12 | DOI
[8] A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, 2nd ed., Cambridge University Press, Cambridge (2000) | DOI