Stabilizers on \(L\)-algebras
Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 105-124.

Voir la notice de l'article provenant de la source Library of Science

The main goal of this paper is to introduce the notion of stabilizers in L-algebras and develop stabilizer theory in L-algebras. In this paper, we introduced the notions of left and right stabilizers and investigated some related properties of them. Then, we discussed the relations among stabilizers, ideal and co-annihilators. Also, we obtained that the set of all ideals of a CKL-algebra forms a relative pseudo-complemented lattice. In addition, we proved that right stabilizers in CKL-algebra are ideals. Then by using the right stabilizers we produced a basis for a topology on L-algebra. We showed that the generated topology by this basis is Baire, connected, locally connected and separable and we investigated the other properties of this topology.
Keywords: \(L\)-algebra, stabilizer, ideal, co-anihiliators, Baire space, topological space
@article{BSL_2024_53_1_a3,
     author = {Rezaei, Gholam Reza and Aaly Kologani, Mona},
     title = {Stabilizers on {\(L\)-algebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {105--124},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/}
}
TY  - JOUR
AU  - Rezaei, Gholam Reza
AU  - Aaly Kologani, Mona
TI  - Stabilizers on \(L\)-algebras
JO  - Bulletin of the Section of Logic
PY  - 2024
SP  - 105
EP  - 124
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/
LA  - en
ID  - BSL_2024_53_1_a3
ER  - 
%0 Journal Article
%A Rezaei, Gholam Reza
%A Aaly Kologani, Mona
%T Stabilizers on \(L\)-algebras
%J Bulletin of the Section of Logic
%D 2024
%P 105-124
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/
%G en
%F BSL_2024_53_1_a3
Rezaei, Gholam Reza; Aaly Kologani, Mona. Stabilizers on \(L\)-algebras. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 105-124. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/

[1] M. Aaly Kologani, Relations between L-algebras and other logical algebras, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 4(1) (2023), pp. 27–46 | DOI

[2] M. Aaly Kologani, Some results on L-algebars, Soft Computing, vol. 27 (2023), pp. 13765–13777 | DOI

[3] R. A. Borzooei, M. Aaly Kologani, Stabilizers topology of hoops, Algebraic Structures and Their Applications, vol. 1(1) (2014), pp. 35–48 | DOI

[4] X. Y. Cheng, M. Wang, W. Wang, J. T. Wang, Stabilizers in EQ-algebras, Open Mathematics, vol. 17 (2019), pp. 998–1013 | DOI

[5] L. C. Ciungu, Results in L-algebras, Algebra Univers, vol. 87 (2021), p. 7 | DOI

[6] M. Haveshki, M. Mohamadhasani, Stabilizer in BL-algebras and its properties, International Mathematical Forum, vol. 5(57) (2010), pp. 2809–2816 | DOI

[7] B. Meng, X. L. Xin, Generalized co-annihilator of BL-algebras, Open Mathematics, vol. 13(1) (2015), pp. 639–654 | DOI

[8] W. Rump, L-algebras, self-similarity, and ℓ-groups, Journal of Algebra, vol. 320 (2008), pp. 2328–2348 | DOI

[9] W. Rump, A general Glivenko theorem, Algebra Universalis, vol. 61 (2009), pp. 455–473 | DOI

[10] W. Rump, Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Universalis, vol. 67(2) (2012), pp. 121–130 | DOI

[11] W. J. Tao, A. B. Saeid, P. F. He, Stabilizers in MTL-algebras, Journal of Intelligent and Fuzzy Systems, vol. 35 (2018), pp. 717–727 | DOI

[12] Y. L. Wu, J. Wang, Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets and Systems, vol. 369 (2019), pp. 103–113 | DOI

[13] Y. L. Wu, Y. C. Yang, Orthomodular lattices as L-algebras, Soft Computing, vol. 24 (2020), pp. 14391–14400 | DOI