Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2024_53_1_a3, author = {Rezaei, Gholam Reza and Aaly Kologani, Mona}, title = {Stabilizers on {\(L\)-algebras}}, journal = {Bulletin of the Section of Logic}, pages = {105--124}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/} }
Rezaei, Gholam Reza; Aaly Kologani, Mona. Stabilizers on \(L\)-algebras. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 105-124. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a3/
[1] M. Aaly Kologani, Relations between L-algebras and other logical algebras, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 4(1) (2023), pp. 27–46 | DOI
[2] M. Aaly Kologani, Some results on L-algebars, Soft Computing, vol. 27 (2023), pp. 13765–13777 | DOI
[3] R. A. Borzooei, M. Aaly Kologani, Stabilizers topology of hoops, Algebraic Structures and Their Applications, vol. 1(1) (2014), pp. 35–48 | DOI
[4] X. Y. Cheng, M. Wang, W. Wang, J. T. Wang, Stabilizers in EQ-algebras, Open Mathematics, vol. 17 (2019), pp. 998–1013 | DOI
[5] L. C. Ciungu, Results in L-algebras, Algebra Univers, vol. 87 (2021), p. 7 | DOI
[6] M. Haveshki, M. Mohamadhasani, Stabilizer in BL-algebras and its properties, International Mathematical Forum, vol. 5(57) (2010), pp. 2809–2816 | DOI
[7] B. Meng, X. L. Xin, Generalized co-annihilator of BL-algebras, Open Mathematics, vol. 13(1) (2015), pp. 639–654 | DOI
[8] W. Rump, L-algebras, self-similarity, and ℓ-groups, Journal of Algebra, vol. 320 (2008), pp. 2328–2348 | DOI
[9] W. Rump, A general Glivenko theorem, Algebra Universalis, vol. 61 (2009), pp. 455–473 | DOI
[10] W. Rump, Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Universalis, vol. 67(2) (2012), pp. 121–130 | DOI
[11] W. J. Tao, A. B. Saeid, P. F. He, Stabilizers in MTL-algebras, Journal of Intelligent and Fuzzy Systems, vol. 35 (2018), pp. 717–727 | DOI
[12] Y. L. Wu, J. Wang, Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets and Systems, vol. 369 (2019), pp. 103–113 | DOI
[13] Y. L. Wu, Y. C. Yang, Orthomodular lattices as L-algebras, Soft Computing, vol. 24 (2020), pp. 14391–14400 | DOI