On Paracomplete Versions of Jaśkowski's Discussive Logic
Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 29-61.

Voir la notice de l'article provenant de la source Library of Science

Jaśkowski's discussive (discursive) logic 𝐃_2 is historically one of the first paraconsistent logics, i.e., logics which 'tolerate' contradictions. Following Jaśkowski's idea to define his discussive logic by means of the modal logic 𝐒5 via special translation functions between discussive and modal languages, and supporting at the same time the tradition of paracomplete logics being the counterpart of paraconsistent ones, we present a paracomplete discussive logic 𝐃_2^𝐩.
Keywords: discussive logic, discursive logic, modal logic, paracomplete logic, paraconsistent logic
@article{BSL_2024_53_1_a1,
     author = {Mruczek-Nasieniewska, Krystyna and Petrukhin, Yaroslav and Shangin, Vasily},
     title = {On {Paracomplete} {Versions} of {Ja\'skowski's} {Discussive} {Logic}},
     journal = {Bulletin of the Section of Logic},
     pages = {29--61},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/}
}
TY  - JOUR
AU  - Mruczek-Nasieniewska, Krystyna
AU  - Petrukhin, Yaroslav
AU  - Shangin, Vasily
TI  - On Paracomplete Versions of Jaśkowski's Discussive Logic
JO  - Bulletin of the Section of Logic
PY  - 2024
SP  - 29
EP  - 61
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/
LA  - en
ID  - BSL_2024_53_1_a1
ER  - 
%0 Journal Article
%A Mruczek-Nasieniewska, Krystyna
%A Petrukhin, Yaroslav
%A Shangin, Vasily
%T On Paracomplete Versions of Jaśkowski's Discussive Logic
%J Bulletin of the Section of Logic
%D 2024
%P 29-61
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/
%G en
%F BSL_2024_53_1_a1
Mruczek-Nasieniewska, Krystyna; Petrukhin, Yaroslav; Shangin, Vasily. On Paracomplete Versions of Jaśkowski's Discussive Logic. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 29-61. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/

[1] G. Achtelik, L. Dubikajtis, E. Dudek, J. Konior, On independence of axioms of Jaśkowski’s discussive propositional calculus, Reports on Mathematical Logic, vol. 11 (1981), pp. 3–11.

[2] S. Akama, J. M. Abe, K. Nakamatsu, Constructive discursive logic with strong negation, Logique et Analyse. Nouvelle Série, vol. 54(215) (2011), pp. 395–408, URL: https://www.jstor.org/stable/44085016

[3] S. Akama, N. C. A. da Costa, Why paraconsistent logics?, [in:] S. Akama (ed.), Towards paraconsistent engineering, vol. 110 of Intelligent Systems Reference Library, Springer, Cham (2016), pp. 7–24 | DOI

[4] A. Almukdad, D. Nelson, Constructible falsity and inexact predicates, The Journal of Symbolic Logic, vol. 49(1) (1984), pp. 231–233 | DOI

[5] A. R. Anderson, N. D. Belnap, Jr., Entailment: The Logic of Relevance and Necessity, Volume 1, Princeton University Press, Princeton, N.J.-London (1975).

[6] O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122 | DOI

[7] A. Avron, Paraconsistent fuzzy logic preserving non-falsity, Fuzzy Sets and Systems, vol. 292 (2016), pp. 75–84 | DOI

[8] R. Ballarin, Modern Origins of Modal Logic, [in:] E. N. Zalta, U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy, Fall 2023 ed., Metaphysics Research Lab, Stanford University (2023), URL: https://plato.stanford.edu/archives/fall2023/entries/logic-modal-origins/

[9] J.-Y. Béziau, The Future of Paraconsistent Logics, Logical Studies, vol. 2 (1999), pp. 1–28, URL: http://wwwa.unine.ch/unilog/jyb/future-pl.pdf

[10] D. A. Bochvar, On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus, History and Philosophy of Logic, vol. 2 (1981), pp. 87–112, translated from the Russian by Merrie Bergmann. | DOI

[11] J. Ciuciura, A quasi-discursive system ND₂⁺, Notre Dame Journal of Formal Logic, vol. 47(3) (2006), pp. 371–384 | DOI

[12] J. Ciuciura, Frontiers of the discursive logic, Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 81–92.

[13] J. Ciuciura, Non-adjunctive discursive logic, Bulletin of the Section of Logic, vol. 42(3-4) (2013), pp. 169–181 | DOI

[14] N. da Costa, L. Dubikajtis, On Jaśkowski’s Discussive Logic, [in:] A. I. Arruda, N. C. A. da Costa, R. Chuaqui (eds.), Non-Classical Logics, Model Theory, And Computability, vol. 89 of Studies in Logic and the Foundations of Mathematics, Elsevier (1977), pp. 37–56 | DOI

[15] R. Ertola, F. Esteva, T. Flaminio, L. Godo, C. Noguera, Paraconsistency properties in degree-preserving fuzzy logics, Soft Computing, vol. 19(3) (2015), pp. 531–546 | DOI

[16] T. Furmanowski, Remarks on discussive propositional calculus, Studia Logica, vol. 34(1) (1975), pp. 39–43 | DOI

[17] J. W. Garson, Modal logic for philosophers, Cambridge University Press, Cambridge (2006) | DOI

[18] K. Gödel, Zum Intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.

[19] O. Grigoriev, M. Nasieniewski, K. Mruczek-Nasieniewska, Y. Petrukhin, V. Shangin, Axiomatizing a minimal discussive logic, Studia Logica, vol. 111(5) (2023), pp. 855–895 | DOI

[20] A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1930).

[21] S. Jaśkowski, Recherches sur le système de la logique intuitioniste, [in:] Actes du Congrès International de Philosophie Scientifique, VI Philosophie des mathématiques, Hermann & Cie, Paris (1936), pp. 58–61, (in: Actualités scientifiques et industrielles, vol. 393).

[22] S. Jaśkowski, On the discussive conjunction in the propositional calculus for inconsistent deductive systems, Logic and Logical Philosophy, vol. 7 (1999), pp. 57–59, translated by Jerzy Perzanowski from the Polish O koniunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis. Sectio A, Mathematica-Physica, vol. 1(8) (1949), no. 8, 171–172. | DOI

[23] S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Logic and Logical Philosophy, vol. 7 (1999), pp. 35–56, translated by Jerzy Perzanowski from the Polish Rachunek zdań dla systemow dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis. Sectio A, Mathematica-Physica, vol. 1(5) (1948), pp. 57–77; another English translation, by Olgierd Wojtasiewicz: Propositional calculus for contradictory deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157. | DOI

[24] S. C. Kleene, An addendum, The Journal of Symbolic Logic, vol. 28 (1963), pp. 154–156 | DOI

[25] A. Kolmogoroff, Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35(1) (1932), pp. 58–65 | DOI

[26] J. Kotas, The axiomatization of S. Jaśkowski’s discussive system, Studia Logica, vol. 33 (1974), pp. 195–200 | DOI

[27] J. Kotas, N. C. A. da Costa, On some Modal Logical Systems Defined in Connexion with Jaśakowski’s Problem, [in:] A. I. Arruda, N. C. A. da Costa, R. Chuaqui (eds.), Non-Classical Logics, Model Theory, And Computability, vol. 89 of Studies in Logic and the Foundations of Mathematics, Elsevier (1977), pp. 57–73 | DOI

[28] S. Kovač, In what sense is Kantian principle of contradiction non-classical?, Logic and Logical Philosophy, vol. 17(3) (2008), pp. 251–274 | DOI

[29] A. Loparić, N. C. A. da Costa, Paraconsistency, paracompleteness, and valuations, Logique et Analyse. Nouvelle Série, vol. 27(106) (1984), pp. 119–131, URL: https://www.jstor.org/stable/44084079

[30] A. Loparić, N. C. A. da Costa, Paraconsistency, paracompleteness, and induction, Logique et Analyse. Nouvelle Série, vol. 29(113) (1986), pp. 73–80.

[31] J. Łukasiewicz, On three-valued logic (in Polish), Ruch Filozoficzny, vol. 5 (1920), pp. 170–171, English translation: J. Łukasiewicz: Selected Works, L. Borkowski (ed.), Amsterdam, North-Holland Publishing Company (1970), pp. 87–88.

[32] K. Mruczek-Nasieniewska, M. Nasieniewski, A. Pietruszczak, A modal extension of Jaśkowski’s discussive logic D2, Logic Journal of the IGPL, vol. 27(4) (2019), pp. 451–477 | DOI

[33] M. Nasieniewski, A. Pietruszczak, A method of generating modal logics defining Jaśkowski’s discussive logic D2, Studia Logica, vol. 97(1) (2011), pp. 161–182 | DOI

[34] M. Nasieniewski, A. Pietruszczak, On the weakest modal logics defining Jaśkowski’s logic D2 and the D2-consequence, Bulletin of the Section of Logic, vol. 41(3–4) (2012), pp. 215–232.

[35] M. Nasieniewski, A. Pietruszczak, Axiomatisations of minimal modal logics defining Jaśkowski-like discussive logics, [in:] A. Indrzejczak, J. Kaczmarek, M. Zawidzki (eds.), Trends in Logic XIII, Wydawnictwo Uniwersytetu Łódzkiego, Łódź (2014), pp. 149–163.

[36] D. Nelson, Constructible falsity, The Journal of Symbolic Logic, vol. 14 (1949), pp. 16–26 | DOI

[37] H. Omori, Sette’s logics, revisited, [in:] Logic, rationality, and interaction, vol. 10455 of Lecture Notes in Computer Science, Springer, Berlin (2017), pp. 451–465 | DOI

[38] H. Omori, J. Alama, Axiomatizing Jaśkowski’s discussive logic ${bf D_2}$, Studia Logica, vol. 106(6) (2018), pp. 1163–1180 | DOI

[39] J. Perzanowski, On M-fragments and L-fragments of normal modal propositional logics, Reports on Mathematical Logic, vol. 5 (1975), pp. 63–72.

[40] Y. Petrukhin, Generalized correspondence analysis for three-valued logics, Logica Universalis, vol. 12(3-4) (2018), pp. 423–460 | DOI

[41] A. Pietz, U. Rivieccio, Nothing but the truth, Journal of Philosophical Logic, vol. 42(1) (2013), pp. 125–135 | DOI

[42] V. M. Popov, Between the logic Par and the set of all formulae, [in:] The Proceeding of the 6th Smirnov Readings in Logic, Contemporary Notebooks, Moscow (2009), pp. 93–95, (in Russian).

[43] V. M. Popov, Between Int<ω,ω> and intuitionistic propositional logic, Logical investigations, vol. 19 (2013), pp. 197–199, URL: https://iphras.ru/uplfile/logic/log19/LI19_Popov.pdf

[44] J. B. Rosser, Logic for mathematicians, 2nd ed., Chelsea Publishing Co., New York (1978).

[45] J. B. Rosser, A. R. Turquette, Many-valued logics, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1951).

[46] A. M. Sette, On the propositional calculus P1, Mathematica Japonica, vol. 18 (1973), pp. 173–180.

[47] A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203 | DOI

[48] D. J. Shoesmith, T. J. Smiley, Multiple-conclusion logic, Cambridge University Press, Cambridge-New York (1978) | DOI

[49] J. Słupecki, G. Bryll, T. Prucnal, Some remarks on three-valued logic of J. Łukasiewicz, Studia Logica, vol. 21 (1967), pp. 45–70 | DOI

[50] B. C. van Fraassen, Singular Terms, Truth-Value Gaps, and Free Logic, The Journal of Philosophy, vol. 63(17) (1966), pp. 481–495, URL: http://www.jstor.org/stable/2024549

[51] V. L. Vasyukov, A new axiomatization of Jaśkowski’s discussive logic, Logic and Logical Philosophy, vol. 9 (2001), pp. 35–46 | DOI

[52] H. Wansing, Negation, [in:] L. Goble (ed.), The Blackwell Guide to Philosophical Logic, Blackwell Philosophy Guides, Blackwell, Oxford (2001), pp. 415–436 | DOI