Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2024_53_1_a1, author = {Mruczek-Nasieniewska, Krystyna and Petrukhin, Yaroslav and Shangin, Vasily}, title = {On {Paracomplete} {Versions} of {Ja\'skowski's} {Discussive} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {29--61}, publisher = {mathdoc}, volume = {53}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/} }
TY - JOUR AU - Mruczek-Nasieniewska, Krystyna AU - Petrukhin, Yaroslav AU - Shangin, Vasily TI - On Paracomplete Versions of Jaśkowski's Discussive Logic JO - Bulletin of the Section of Logic PY - 2024 SP - 29 EP - 61 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/ LA - en ID - BSL_2024_53_1_a1 ER -
%0 Journal Article %A Mruczek-Nasieniewska, Krystyna %A Petrukhin, Yaroslav %A Shangin, Vasily %T On Paracomplete Versions of Jaśkowski's Discussive Logic %J Bulletin of the Section of Logic %D 2024 %P 29-61 %V 53 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/ %G en %F BSL_2024_53_1_a1
Mruczek-Nasieniewska, Krystyna; Petrukhin, Yaroslav; Shangin, Vasily. On Paracomplete Versions of Jaśkowski's Discussive Logic. Bulletin of the Section of Logic, Tome 53 (2024) no. 1, pp. 29-61. http://geodesic.mathdoc.fr/item/BSL_2024_53_1_a1/
[1] G. Achtelik, L. Dubikajtis, E. Dudek, J. Konior, On independence of axioms of Jaśkowski’s discussive propositional calculus, Reports on Mathematical Logic, vol. 11 (1981), pp. 3–11.
[2] S. Akama, J. M. Abe, K. Nakamatsu, Constructive discursive logic with strong negation, Logique et Analyse. Nouvelle Série, vol. 54(215) (2011), pp. 395–408, URL: https://www.jstor.org/stable/44085016
[3] S. Akama, N. C. A. da Costa, Why paraconsistent logics?, [in:] S. Akama (ed.), Towards paraconsistent engineering, vol. 110 of Intelligent Systems Reference Library, Springer, Cham (2016), pp. 7–24 | DOI
[4] A. Almukdad, D. Nelson, Constructible falsity and inexact predicates, The Journal of Symbolic Logic, vol. 49(1) (1984), pp. 231–233 | DOI
[5] A. R. Anderson, N. D. Belnap, Jr., Entailment: The Logic of Relevance and Necessity, Volume 1, Princeton University Press, Princeton, N.J.-London (1975).
[6] O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122 | DOI
[7] A. Avron, Paraconsistent fuzzy logic preserving non-falsity, Fuzzy Sets and Systems, vol. 292 (2016), pp. 75–84 | DOI
[8] R. Ballarin, Modern Origins of Modal Logic, [in:] E. N. Zalta, U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy, Fall 2023 ed., Metaphysics Research Lab, Stanford University (2023), URL: https://plato.stanford.edu/archives/fall2023/entries/logic-modal-origins/
[9] J.-Y. Béziau, The Future of Paraconsistent Logics, Logical Studies, vol. 2 (1999), pp. 1–28, URL: http://wwwa.unine.ch/unilog/jyb/future-pl.pdf
[10] D. A. Bochvar, On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus, History and Philosophy of Logic, vol. 2 (1981), pp. 87–112, translated from the Russian by Merrie Bergmann. | DOI
[11] J. Ciuciura, A quasi-discursive system ND₂⁺, Notre Dame Journal of Formal Logic, vol. 47(3) (2006), pp. 371–384 | DOI
[12] J. Ciuciura, Frontiers of the discursive logic, Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 81–92.
[13] J. Ciuciura, Non-adjunctive discursive logic, Bulletin of the Section of Logic, vol. 42(3-4) (2013), pp. 169–181 | DOI
[14] N. da Costa, L. Dubikajtis, On Jaśkowski’s Discussive Logic, [in:] A. I. Arruda, N. C. A. da Costa, R. Chuaqui (eds.), Non-Classical Logics, Model Theory, And Computability, vol. 89 of Studies in Logic and the Foundations of Mathematics, Elsevier (1977), pp. 37–56 | DOI
[15] R. Ertola, F. Esteva, T. Flaminio, L. Godo, C. Noguera, Paraconsistency properties in degree-preserving fuzzy logics, Soft Computing, vol. 19(3) (2015), pp. 531–546 | DOI
[16] T. Furmanowski, Remarks on discussive propositional calculus, Studia Logica, vol. 34(1) (1975), pp. 39–43 | DOI
[17] J. W. Garson, Modal logic for philosophers, Cambridge University Press, Cambridge (2006) | DOI
[18] K. Gödel, Zum Intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.
[19] O. Grigoriev, M. Nasieniewski, K. Mruczek-Nasieniewska, Y. Petrukhin, V. Shangin, Axiomatizing a minimal discussive logic, Studia Logica, vol. 111(5) (2023), pp. 855–895 | DOI
[20] A. Heyting, Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1930).
[21] S. Jaśkowski, Recherches sur le système de la logique intuitioniste, [in:] Actes du Congrès International de Philosophie Scientifique, VI Philosophie des mathématiques, Hermann & Cie, Paris (1936), pp. 58–61, (in: Actualités scientifiques et industrielles, vol. 393).
[22] S. Jaśkowski, On the discussive conjunction in the propositional calculus for inconsistent deductive systems, Logic and Logical Philosophy, vol. 7 (1999), pp. 57–59, translated by Jerzy Perzanowski from the Polish O koniunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis. Sectio A, Mathematica-Physica, vol. 1(8) (1949), no. 8, 171–172. | DOI
[23] S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Logic and Logical Philosophy, vol. 7 (1999), pp. 35–56, translated by Jerzy Perzanowski from the Polish Rachunek zdań dla systemow dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis. Sectio A, Mathematica-Physica, vol. 1(5) (1948), pp. 57–77; another English translation, by Olgierd Wojtasiewicz: Propositional calculus for contradictory deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157. | DOI
[24] S. C. Kleene, An addendum, The Journal of Symbolic Logic, vol. 28 (1963), pp. 154–156 | DOI
[25] A. Kolmogoroff, Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35(1) (1932), pp. 58–65 | DOI
[26] J. Kotas, The axiomatization of S. Jaśkowski’s discussive system, Studia Logica, vol. 33 (1974), pp. 195–200 | DOI
[27] J. Kotas, N. C. A. da Costa, On some Modal Logical Systems Defined in Connexion with Jaśakowski’s Problem, [in:] A. I. Arruda, N. C. A. da Costa, R. Chuaqui (eds.), Non-Classical Logics, Model Theory, And Computability, vol. 89 of Studies in Logic and the Foundations of Mathematics, Elsevier (1977), pp. 57–73 | DOI
[28] S. Kovač, In what sense is Kantian principle of contradiction non-classical?, Logic and Logical Philosophy, vol. 17(3) (2008), pp. 251–274 | DOI
[29] A. Loparić, N. C. A. da Costa, Paraconsistency, paracompleteness, and valuations, Logique et Analyse. Nouvelle Série, vol. 27(106) (1984), pp. 119–131, URL: https://www.jstor.org/stable/44084079
[30] A. Loparić, N. C. A. da Costa, Paraconsistency, paracompleteness, and induction, Logique et Analyse. Nouvelle Série, vol. 29(113) (1986), pp. 73–80.
[31] J. Łukasiewicz, On three-valued logic (in Polish), Ruch Filozoficzny, vol. 5 (1920), pp. 170–171, English translation: J. Łukasiewicz: Selected Works, L. Borkowski (ed.), Amsterdam, North-Holland Publishing Company (1970), pp. 87–88.
[32] K. Mruczek-Nasieniewska, M. Nasieniewski, A. Pietruszczak, A modal extension of Jaśkowski’s discussive logic D2, Logic Journal of the IGPL, vol. 27(4) (2019), pp. 451–477 | DOI
[33] M. Nasieniewski, A. Pietruszczak, A method of generating modal logics defining Jaśkowski’s discussive logic D2, Studia Logica, vol. 97(1) (2011), pp. 161–182 | DOI
[34] M. Nasieniewski, A. Pietruszczak, On the weakest modal logics defining Jaśkowski’s logic D2 and the D2-consequence, Bulletin of the Section of Logic, vol. 41(3–4) (2012), pp. 215–232.
[35] M. Nasieniewski, A. Pietruszczak, Axiomatisations of minimal modal logics defining Jaśkowski-like discussive logics, [in:] A. Indrzejczak, J. Kaczmarek, M. Zawidzki (eds.), Trends in Logic XIII, Wydawnictwo Uniwersytetu Łódzkiego, Łódź (2014), pp. 149–163.
[36] D. Nelson, Constructible falsity, The Journal of Symbolic Logic, vol. 14 (1949), pp. 16–26 | DOI
[37] H. Omori, Sette’s logics, revisited, [in:] Logic, rationality, and interaction, vol. 10455 of Lecture Notes in Computer Science, Springer, Berlin (2017), pp. 451–465 | DOI
[38] H. Omori, J. Alama, Axiomatizing Jaśkowski’s discussive logic ${bf D_2}$, Studia Logica, vol. 106(6) (2018), pp. 1163–1180 | DOI
[39] J. Perzanowski, On M-fragments and L-fragments of normal modal propositional logics, Reports on Mathematical Logic, vol. 5 (1975), pp. 63–72.
[40] Y. Petrukhin, Generalized correspondence analysis for three-valued logics, Logica Universalis, vol. 12(3-4) (2018), pp. 423–460 | DOI
[41] A. Pietz, U. Rivieccio, Nothing but the truth, Journal of Philosophical Logic, vol. 42(1) (2013), pp. 125–135 | DOI
[42] V. M. Popov, Between the logic Par and the set of all formulae, [in:] The Proceeding of the 6th Smirnov Readings in Logic, Contemporary Notebooks, Moscow (2009), pp. 93–95, (in Russian).
[43] V. M. Popov, Between Int<ω,ω> and intuitionistic propositional logic, Logical investigations, vol. 19 (2013), pp. 197–199, URL: https://iphras.ru/uplfile/logic/log19/LI19_Popov.pdf
[44] J. B. Rosser, Logic for mathematicians, 2nd ed., Chelsea Publishing Co., New York (1978).
[45] J. B. Rosser, A. R. Turquette, Many-valued logics, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1951).
[46] A. M. Sette, On the propositional calculus P1, Mathematica Japonica, vol. 18 (1973), pp. 173–180.
[47] A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203 | DOI
[48] D. J. Shoesmith, T. J. Smiley, Multiple-conclusion logic, Cambridge University Press, Cambridge-New York (1978) | DOI
[49] J. Słupecki, G. Bryll, T. Prucnal, Some remarks on three-valued logic of J. Łukasiewicz, Studia Logica, vol. 21 (1967), pp. 45–70 | DOI
[50] B. C. van Fraassen, Singular Terms, Truth-Value Gaps, and Free Logic, The Journal of Philosophy, vol. 63(17) (1966), pp. 481–495, URL: http://www.jstor.org/stable/2024549
[51] V. L. Vasyukov, A new axiomatization of Jaśkowski’s discussive logic, Logic and Logical Philosophy, vol. 9 (2001), pp. 35–46 | DOI
[52] H. Wansing, Negation, [in:] L. Goble (ed.), The Blackwell Guide to Philosophical Logic, Blackwell Philosophy Guides, Blackwell, Oxford (2001), pp. 415–436 | DOI