Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_4_a3, author = {Walendziak, Andrzej}, title = {On {Implicative} and {Positive} {Implicative} {GE} {Algebras}}, journal = {Bulletin of the Section of Logic}, pages = {497--515}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/} }
Walendziak, Andrzej. On Implicative and Positive Implicative GE Algebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 497-515. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/
[1] J. C. Abbott, Semi-boolean algebras, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.
[2] R. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96 | DOI
[3] D. Bus˛neag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8(4) (2010), pp. 688–705 | DOI
[4] P. Cintula, C. Noguera, Logic and Implication: An Introduction to the General Algebraic Study of Non-Classical Logics, vol. 57 of Trends in Logic, Springer, Berlin (2010) | DOI
[5] A. Diego, Sur les algébras de Hilbert, vol. 21 of Collection de Logigue Mathématique, Serie A, Gauthier-Villars, Paris (1966).
[6] L. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37 (1950), pp. 63–74, URL: http://eudml.org/doc/213228
[7] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 353–406.
[8] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 407–456.
[9] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, vol. 42 (1966), pp. 26–29 | DOI
[10] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23 (1978), pp. 1–26.
[11] Y. B. Jun, M. S. Kang, Fuzzifications of generalized Tarski filters in Tarski algebras, Computers and Mathematics with Applications, vol. 61 (2011), pp. 1–7 | DOI
[12] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116 | DOI
[13] J. Kim, Y. Kim, E. H. Roh, A note on GT-algebras, The Pure and Applied Mathematics, vol. 16(1) (2009), pp. 59–69, URL: https://koreascience.kr/article/JAKO200910335351650.page
[14] Y. Komori, The class of BCC-algebras is not a variety, Mathematica Japonica, vol. 29(3) (1984), pp. 391–394.
[15] C. A. Meredith, Formal Logics, 2nd ed., Clarendon Press, Oxford (1962).
[16] A. Monteiro, Lectures on Hilbert and Tarski algebras, 2nd ed., Insitituto de Mathemática, Universuidad Nacional del Sur, Bahía Blanca, Argentina (1960).
[17] S. Tanaka, A new class of algebras, Mathematics Seminar Notes, vol. 3 (1975), pp. 37–43.
[18] A. Walendziak, On commutative BE-algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2009), pp. 281–284 | DOI
[19] A. Walendziak, The implicative property for some generalizations of BCK algebras, Journal of Multiple-Valued Logic and Soft Computing, vol. 31 (2018), pp. 591–611.
[20] A. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23 (2019), pp. 7505–7511 | DOI
[21] A. Walendziak, On implicative BE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 45–54 | DOI
[22] H. Yutani, On a system of axioms of commutative BCK-algebras, Mathematics Seminar Notes, vol. 5 (1977), pp. 255–256.
[23] D. Zelent, Transitivity of implicative aBE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 55–58 | DOI