On Implicative and Positive Implicative GE Algebras
Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 497-515.

Voir la notice de l'article provenant de la source Library of Science

GE algebras (generalized exchange algebras), transitive GE algebras (tGE algebras, for short) and aGE algebras (that is, GE algebrasverifying the antisymmetry) are a generalization of Hilbert algebras. Here some properties and characterizations of these algebras are investigated. Connections between GE algebras and other classes of algebras of logic are studied. The implicative and positive implicative properties are discussed. It is shown that the class of positive implicative GE algebras (resp. the class of implicative aGE algebras) coincides with the class of generalized Tarski algebras (resp. the class of Tarski algebras). It is proved that for any aGE algebra the property of implicativity is equivalent to the commutative property. Moreover, several examples to illustrate the results are given. Finally, the interrelationships between some classes of implicative and positive implicative algebras are presented.
Keywords: GE algebra, tGE algebra, BCK algebra, Hilbert algebra, (positive) implicativity
@article{BSL_2023_52_4_a3,
     author = {Walendziak, Andrzej},
     title = {On {Implicative} and {Positive} {Implicative} {GE} {Algebras}},
     journal = {Bulletin of the Section of Logic},
     pages = {497--515},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - On Implicative and Positive Implicative GE Algebras
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 497
EP  - 515
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/
LA  - en
ID  - BSL_2023_52_4_a3
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T On Implicative and Positive Implicative GE Algebras
%J Bulletin of the Section of Logic
%D 2023
%P 497-515
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/
%G en
%F BSL_2023_52_4_a3
Walendziak, Andrzej. On Implicative and Positive Implicative GE Algebras. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 497-515. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a3/

[1] J. C. Abbott, Semi-boolean algebras, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.

[2] R. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96 | DOI

[3] D. Bus˛neag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8(4) (2010), pp. 688–705 | DOI

[4] P. Cintula, C. Noguera, Logic and Implication: An Introduction to the General Algebraic Study of Non-Classical Logics, vol. 57 of Trends in Logic, Springer, Berlin (2010) | DOI

[5] A. Diego, Sur les algébras de Hilbert, vol. 21 of Collection de Logigue Mathématique, Serie A, Gauthier-Villars, Paris (1966).

[6] L. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37 (1950), pp. 63–74, URL: http://eudml.org/doc/213228

[7] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 353–406.

[8] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 407–456.

[9] K. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, vol. 42 (1966), pp. 26–29 | DOI

[10] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23 (1978), pp. 1–26.

[11] Y. B. Jun, M. S. Kang, Fuzzifications of generalized Tarski filters in Tarski algebras, Computers and Mathematics with Applications, vol. 61 (2011), pp. 1–7 | DOI

[12] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116 | DOI

[13] J. Kim, Y. Kim, E. H. Roh, A note on GT-algebras, The Pure and Applied Mathematics, vol. 16(1) (2009), pp. 59–69, URL: https://koreascience.kr/article/JAKO200910335351650.page

[14] Y. Komori, The class of BCC-algebras is not a variety, Mathematica Japonica, vol. 29(3) (1984), pp. 391–394.

[15] C. A. Meredith, Formal Logics, 2nd ed., Clarendon Press, Oxford (1962).

[16] A. Monteiro, Lectures on Hilbert and Tarski algebras, 2nd ed., Insitituto de Mathemática, Universuidad Nacional del Sur, Bahía Blanca, Argentina (1960).

[17] S. Tanaka, A new class of algebras, Mathematics Seminar Notes, vol. 3 (1975), pp. 37–43.

[18] A. Walendziak, On commutative BE-algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2009), pp. 281–284 | DOI

[19] A. Walendziak, The implicative property for some generalizations of BCK algebras, Journal of Multiple-Valued Logic and Soft Computing, vol. 31 (2018), pp. 591–611.

[20] A. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23 (2019), pp. 7505–7511 | DOI

[21] A. Walendziak, On implicative BE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 45–54 | DOI

[22] H. Yutani, On a system of axioms of commutative BCK-algebras, Mathematics Seminar Notes, vol. 5 (1977), pp. 255–256.

[23] D. Zelent, Transitivity of implicative aBE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 55–58 | DOI