Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_4_a2, author = {Martini, Simone and Masini, Andrea and Zorzi, Margherita}, title = {Cut {Elimination} for {Extended} {Sequent} {Calculi}}, journal = {Bulletin of the Section of Logic}, pages = {459--495}, publisher = {mathdoc}, volume = {52}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a2/} }
TY - JOUR AU - Martini, Simone AU - Masini, Andrea AU - Zorzi, Margherita TI - Cut Elimination for Extended Sequent Calculi JO - Bulletin of the Section of Logic PY - 2023 SP - 459 EP - 495 VL - 52 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a2/ LA - en ID - BSL_2023_52_4_a2 ER -
Martini, Simone; Masini, Andrea; Zorzi, Margherita. Cut Elimination for Extended Sequent Calculi. Bulletin of the Section of Logic, Tome 52 (2023) no. 4, pp. 459-495. http://geodesic.mathdoc.fr/item/BSL_2023_52_4_a2/
[1] A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.), Logic: From Foundations to Applications, Oxford Science Publications, Clarendon Press, New York (1996), pp. 1–32.
[2] J. L. Bell, M. Machover, A course in mathematical logic, North Holland, Amsterdam (1977).
[3] S. Burns, R. Zach, Cut-free completeness for modular hypersequent calculi for modal Logics K, T, and D, Review of Symbolic Logic, vol. 14(4) (2021), pp. 910–929 | DOI
[4] C. Cerrato, Cut-free modal sequents for normal modal logics, Notre Dame Journal of Formal Logic, vol. 34(4) (1993), pp. 564–582 | DOI
[5] C. Cerrato, Modal tree-sequents, Mathematical Logic Quarterly, vol. 42(2) (1996), pp. 197–210 | DOI
[6] A. Ciabattoni, R. Ramanayake, H. Wansing, Hypersequent and display calculi—a unified perspective, Studia Logica, vol. 102(6) (2014), pp. 1245–1294 | DOI
[7] M. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic, vol. 13(2) (1972), pp. 237–247 | DOI
[8] M. Fitting, Proof methods for modal and intuitionistic logics, Springer–Verlag (1983).
[9] M. Fitting, Prefixed tableaus and nested sequents, Annals of Pure and Applied Logic, vol. 163(3) (2012), pp. 291–313 | DOI
[10] D. M. Gabbay, R. J. G. B. de Queiroz, Extending the Curry-Howard interpretation to linear, relevant and other resource logics, Journal of Symbolic Logic, vol. 57(4) (1992), pp. 1319–1365 | DOI
[11] J.-Y. Girard, Proof theory and logical complexity, vol. 1, Bibliopolis, Naples (1987).
[12] S. Guerrini, S. Martini, A. Masini, An analysis of (linear) exponentials based on extended sequents, Logic Journal of the IGPL, vol. 6(5) (1998), pp. 735–753 | DOI
[13] B. Lellmann, Linear nested sequents, 2-sequents and hypersequents, [in:] H. de Nivelle (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2015, vol. 9323 of Lecture Notes in Computer Science, Springer (2015), pp. 135–150 | DOI
[14] B. Lellmann, D. Pattinson, Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic, [in:] K. Lodaya (ed.), Logic and Its Applications, 5th Indian Conference, ICLA 2013, vol. 7750 of Lecture Notes in Computer Science, Springer (2013), pp. 148–160 | DOI
[15] B. Lellmann, E. Pimentel, Modularisation of sequent calculi for normal and non-normal modalities, ACM Transactions on Compututational Logic, vol. 20(2) (2019), pp. 7:1–7:46 | DOI
[16] S. Martini, A. Masini, On the fine structure of the exponential rule, [in:] J.-Y. Girard, Y. Lafont, L. Regnier (eds.), Advances in Linear Logic, Cambridge University Press (1993), pp. 197–210.
[17] S. Martini, A. Masini, A Computational Interpretation of Modal Proofs, [in:] H. Wansing (ed.), Proof Theory of Modal Logics, Kluwer (1994), pp. 213–241.
[18] S. Martini, A. Masini, M. Zorzi, From 2-sequents and linear nested sequents to natural eduction for normal modal logics, ACM Transactions on Compututational Logic, vol. 22(3) (2021), pp. 19:1–19:29 | DOI
[19] A. Masini, 2-Sequent calculus: A proof theory of modalities, Annals of Pure and Applied Logic, vol. 58(3) (1992), pp. 229–246 | DOI
[20] A. Masini, 2-Sequent calculus: intuitionism and natural deduction, Journal of Logic and Computation, vol. 3(5) (1993), pp. 533–562 | DOI
[21] A. Masini, L. Vigan`o, M. Volpe, Labelled natural deduction for a bundled branching temporal logic, Journal of Logic and Computation, vol. 21(6) (2011), pp. 1093–1163 | DOI
[22] G. Mints, Indexed systems of sequents and cut-elimination, Journal of Philosophical Logic, vol. 26(6) (1997), pp. 671–696 | DOI
[23] S. Negri, Proof theory for modal logic, Philosophy Compass, vol. 6(8) (2011), pp. 523–538 | DOI
[24] A. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh, UK (1993).
[25] G. Takeuti, Proof theory, 2nd ed., vol. 81 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1987).
[26] L. Vigan`o, Labelled non-classical logics, Kluwer Academic Publishers, Dordrecht (2000).
[27] H. Wansing, Sequent calculi for normal modal propositional logics, Journal of Logic and Computation, vol. 4(2) (1994), pp. 125–142 | DOI
[28] H. Wansing, Predicate logics on display, Studia Logica, vol. 62(1) (1999), pp. 49–75 | DOI