Fractional-Valued Modal Logic and Soft Bilateralism
Bulletin of the Section of Logic, Tome 52 (2023) no. 3, pp. 275-299.

Voir la notice de l'article provenant de la source Library of Science

In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic 𝐊, whose values lie in the closed interval [0,1] of rational numbers [14]. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of 𝐊. Specifically, we introduce well-behaved hypersequent calculi for the deontic logic 𝐃 and the non-normal modal logics 𝐄 and 𝐌 and thoroughly investigate their structural properties.
Keywords: modal logic, general proof theory (including proof-theoretic semantics), many-valued logics
@article{BSL_2023_52_3_a0,
     author = {Piazza, Mario and Pulcini, Gabriele and Tesi, Matteo},
     title = {Fractional-Valued {Modal} {Logic} and {Soft} {Bilateralism}},
     journal = {Bulletin of the Section of Logic},
     pages = {275--299},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/}
}
TY  - JOUR
AU  - Piazza, Mario
AU  - Pulcini, Gabriele
AU  - Tesi, Matteo
TI  - Fractional-Valued Modal Logic and Soft Bilateralism
JO  - Bulletin of the Section of Logic
PY  - 2023
SP  - 275
EP  - 299
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/
LA  - en
ID  - BSL_2023_52_3_a0
ER  - 
%0 Journal Article
%A Piazza, Mario
%A Pulcini, Gabriele
%A Tesi, Matteo
%T Fractional-Valued Modal Logic and Soft Bilateralism
%J Bulletin of the Section of Logic
%D 2023
%P 275-299
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/
%G en
%F BSL_2023_52_3_a0
Piazza, Mario; Pulcini, Gabriele; Tesi, Matteo. Fractional-Valued Modal Logic and Soft Bilateralism. Bulletin of the Section of Logic, Tome 52 (2023) no. 3, pp. 275-299. http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/

[1] A. Avron, A constructive analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951 | DOI

[2] A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3–4) (1991), pp. 225–248 | DOI

[3] A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] Logic: From foundations to applications, Clarendon Press (1996), pp. 1–32.

[4] N. Francez, Bilateralism in proof-theoretic semantics, Journal of Philosophical Logic, vol. 43(2–3) (2014), pp. 239–259 | DOI

[5] N. Francez, Proof-theoretic Semantics, College Publications (2015).

[6] V. Goranko, G. Pulcini, T. Skura, Refutation systems: An overview and some applications to philosophical logics, [in:] F. Liu, H. Ono, J. Yu (eds.), Knowledge, Proof and Dynamics, Springer (2020), pp. 173–197 | DOI

[7] N. Kürbis, Proof-theoretic semantics, a problem with negation and prospects for modality, Journal of Philosophical Logic, vol. 44(6) (2015), pp. 713–727 | DOI

[8] N. Kürbis, Some comments on Ian Rumfitt’s bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644 | DOI

[9] N. Kürbis, Bilateralist detours: From intuitionist to classical logic and back, [in:] Logique et Analyse, vol. 239 (2017), pp. 301–316 | DOI

[10] G. Mints, Lewis’ systems and system T (1965–1973), [in:] Selected papers in proof theory, Bibliopolis (1992), pp. 221–294.

[11] G. Mints, A Short Introduction to Modal Logic, Center for the Study of Language (CSLI) (1992).

[12] M. Piazza, G. Pulcini, Fractional semantics for classical logic, The Review of Symbolic Logic, vol. 13(4) (2020), pp. 810–828 | DOI

[13] M. Piazza, G. Pulcini, M. Tesi, Linear logic in a refutational setting, unpublished manuscript.

[14] M. Piazza, G. Pulcini, M. Tesi, Fractional-valued modal logic, The Review of Symbolic Logic, (2021), p. 1–20 | DOI

[15] T. Piecha, P. Schroeder-Heister, Advances in Proof-Theoretic Semantics, Springer (2016).

[16] G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900 | DOI

[17] G. Pulcini, A. Varzi, Classical logic through rejection and refutation, [in:] M. Fitting (ed.), Landscapes in logic (Vol. 2), College Publications (1992).

[18] G. Pulcini, A. C. Varzi, Complementary Proof Nets for Classical Logic (2023) | DOI

[19] I. Rumfitt, ‘Yes’ and ‘No’, Mind, vol. 109(436) (2000), pp. 781–823 | DOI

[20] T. Skura, Refutation systems in propositional logic, [in:] Handbook of Philosophical Logic: Volume 16, Springer (2010), pp. 115–157 | DOI

[21] H. Wansing, The idea of a proof-theoretic semantics and the meaning of the logical operations, Studia Logica, vol. 64(1) (2000), pp. 3–20 | DOI

[22] H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46 | DOI