Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_3_a0, author = {Piazza, Mario and Pulcini, Gabriele and Tesi, Matteo}, title = {Fractional-Valued {Modal} {Logic} and {Soft} {Bilateralism}}, journal = {Bulletin of the Section of Logic}, pages = {275--299}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/} }
TY - JOUR AU - Piazza, Mario AU - Pulcini, Gabriele AU - Tesi, Matteo TI - Fractional-Valued Modal Logic and Soft Bilateralism JO - Bulletin of the Section of Logic PY - 2023 SP - 275 EP - 299 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/ LA - en ID - BSL_2023_52_3_a0 ER -
Piazza, Mario; Pulcini, Gabriele; Tesi, Matteo. Fractional-Valued Modal Logic and Soft Bilateralism. Bulletin of the Section of Logic, Tome 52 (2023) no. 3, pp. 275-299. http://geodesic.mathdoc.fr/item/BSL_2023_52_3_a0/
[1] A. Avron, A constructive analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951 | DOI
[2] A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3–4) (1991), pp. 225–248 | DOI
[3] A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] Logic: From foundations to applications, Clarendon Press (1996), pp. 1–32.
[4] N. Francez, Bilateralism in proof-theoretic semantics, Journal of Philosophical Logic, vol. 43(2–3) (2014), pp. 239–259 | DOI
[5] N. Francez, Proof-theoretic Semantics, College Publications (2015).
[6] V. Goranko, G. Pulcini, T. Skura, Refutation systems: An overview and some applications to philosophical logics, [in:] F. Liu, H. Ono, J. Yu (eds.), Knowledge, Proof and Dynamics, Springer (2020), pp. 173–197 | DOI
[7] N. Kürbis, Proof-theoretic semantics, a problem with negation and prospects for modality, Journal of Philosophical Logic, vol. 44(6) (2015), pp. 713–727 | DOI
[8] N. Kürbis, Some comments on Ian Rumfitt’s bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644 | DOI
[9] N. Kürbis, Bilateralist detours: From intuitionist to classical logic and back, [in:] Logique et Analyse, vol. 239 (2017), pp. 301–316 | DOI
[10] G. Mints, Lewis’ systems and system T (1965–1973), [in:] Selected papers in proof theory, Bibliopolis (1992), pp. 221–294.
[11] G. Mints, A Short Introduction to Modal Logic, Center for the Study of Language (CSLI) (1992).
[12] M. Piazza, G. Pulcini, Fractional semantics for classical logic, The Review of Symbolic Logic, vol. 13(4) (2020), pp. 810–828 | DOI
[13] M. Piazza, G. Pulcini, M. Tesi, Linear logic in a refutational setting, unpublished manuscript.
[14] M. Piazza, G. Pulcini, M. Tesi, Fractional-valued modal logic, The Review of Symbolic Logic, (2021), p. 1–20 | DOI
[15] T. Piecha, P. Schroeder-Heister, Advances in Proof-Theoretic Semantics, Springer (2016).
[16] G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900 | DOI
[17] G. Pulcini, A. Varzi, Classical logic through rejection and refutation, [in:] M. Fitting (ed.), Landscapes in logic (Vol. 2), College Publications (1992).
[18] G. Pulcini, A. C. Varzi, Complementary Proof Nets for Classical Logic (2023) | DOI
[19] I. Rumfitt, ‘Yes’ and ‘No’, Mind, vol. 109(436) (2000), pp. 781–823 | DOI
[20] T. Skura, Refutation systems in propositional logic, [in:] Handbook of Philosophical Logic: Volume 16, Springer (2010), pp. 115–157 | DOI
[21] H. Wansing, The idea of a proof-theoretic semantics and the meaning of the logical operations, Studia Logica, vol. 64(1) (2000), pp. 3–20 | DOI
[22] H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46 | DOI