Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_2_a3, author = {Gheorghiu, Alexander V. and Pym, David J.}, title = {Definite {Formulae,} {Negation-as-Failure,} and the {Base-Extension} {Semantics} of {Intuitionistic} {Propositional} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {239--266}, publisher = {mathdoc}, volume = {52}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a3/} }
TY - JOUR AU - Gheorghiu, Alexander V. AU - Pym, David J. TI - Definite Formulae, Negation-as-Failure, and the Base-Extension Semantics of Intuitionistic Propositional Logic JO - Bulletin of the Section of Logic PY - 2023 SP - 239 EP - 266 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a3/ LA - en ID - BSL_2023_52_2_a3 ER -
%0 Journal Article %A Gheorghiu, Alexander V. %A Pym, David J. %T Definite Formulae, Negation-as-Failure, and the Base-Extension Semantics of Intuitionistic Propositional Logic %J Bulletin of the Section of Logic %D 2023 %P 239-266 %V 52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a3/ %G en %F BSL_2023_52_2_a3
Gheorghiu, Alexander V.; Pym, David J. Definite Formulae, Negation-as-Failure, and the Base-Extension Semantics of Intuitionistic Propositional Logic. Bulletin of the Section of Logic, Tome 52 (2023) no. 2, pp. 239-266. http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a3/
[1] K. R. Apt, M. H. Van Emden, Contributions to the theory of logic programming, Journal of the ACM, vol. 29(3) (1982), pp. 841–862 | DOI
[2] R. Brandom, Articulating Reasons: An Introduction to Inferentialism, Harvard University Press (2000) | DOI
[3] K. L. Clark, Negation as Failure, [in:] Logic and Data Bases, Springer (1978), pp. 293–322 | DOI
[4] M. Dummett, The Logical Basis of Metaphysics, Harvard University Press (1991).
[5] N. Francez, Bilateralism in Proof-theoretic Semantics, Journal of Philosophical Logic, vol. 43 (2014), pp. 239–259 | DOI
[6] G. Frege, Die Verneinung. Eine Logische Untersuchung, Beiträge Zur Philosophie des Deutschen Idealismus, (1919), pp. 143–157.
[7] A. V. Gheorghiu, S. Docherty, D. J. Pym, Reductive Logic, Coalgebra, and Proof-search: A Perspective from Resource Semantics, [in:] A. Palmigiano, M. Sadrzadeh (eds.), Samson Abramsky on Logic and Structure in Computer Science and Beyond, Springer Outstanding Contributions to Logic Series, Springer (2023), to appear.
[8] A. V. Gheorghiu, D. J. Pym, From Proof-theoretic Validity to Base-extension Semantics for Intuitionistic Propositional Logic (Accessed 08 February 2023), URL: https://arxiv.org/abs/2210.05344 submitted
[9] L. Hallnäs, P. Schroeder-Heister, A Proof-theoretic Approach to Logic Programming: I. Clauses as Rules, Journal of Logic and Computation, vol. 1(2) (1990), pp. 261–283 | DOI
[10] L. Hallnäs, P. Schroeder-Heister, A Proof-theoretic Approach to Logic Programming: II. Programs as Definitions, Journal of Logic and Computation, vol. 1(5) (1991), pp. 635–660 | DOI
[11] J. Harland, On Hereditary Harrop Formulae as a Basis for Logic Programming, Ph.D. thesis, The University of Edinburgh (1991).
[12] J. Harland, Success and Failure for hereditary Harrop Formulae, The Journal of Logic Programming, vol. 17(1) (1993), pp. 1–29 | DOI
[13] R. Kowalski, Logic for Problem Solving, https://www.doc.ic.ac.uk/~rak/papers/LFPScommentary.pdf (Accessed 15 August 2022), commentary on the book ‘Logic for Problem Solving’ by R. Kowalski.
[14] R. Kowalski, Logic for Problem-Solving, North-Holland Publishing Co. (1986).
[15] S. A. Kripke, Semantical Analysis of Intuitionistic Logic I, [in:] Studies in Logic and the Foundations of Mathematics, vol. 40, Elsevier (1965), pp. 92–130 | DOI
[16] N. Kürbis, Proof and Falsity: A Logical Investigation, Cambridge University Press (2019) | DOI
[17] J. W. Lloyd, Foundations of Logic Programming, Symbolic Computation, Springer (1984) | DOI
[18] D. Makinson, On an Inferential Semantics for Classical Logic, Logic Journal of IGPL, vol. 22(1) (2014), pp. 147–154 | DOI
[19] D. Miller, A Logical Analysis of Modules in Logic Programming, Journal of Logic Programming, vol. 6(1-2) (1989), pp. 79–108 | DOI
[20] D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform Proofs as a Foundation for Logic Programming, Annals of Pure and Applied Logic, vol. 51(1) (1991), pp. 125–157 | DOI
[21] T. Piecha, P. Schroeder-Heister, The Definitional View of Atomic Systems in Proof-theoretic Semantics, [in:] The Logica Yearbook 2016, College Publications London (2017), pp. 185–200.
[22] D. J. Pym, E. Ritter, Reductive logic and Proof-search: Proof Theory, Semantics, and Control, vol. 45 of Oxford Logic Guides, Oxford University Press (2004).
[23] D. J. Pym, E. Ritter, E. Robinson, Proof-theoretic Semantics in Sheaves (Extended Abstract), [in:] Proceedings of the Eleventh Scandinavian Logic Symposium — SLSS 11 (2022), pp. 36–38.
[24] R. Reiter, On closed world data bases, [in:] Readings in artificial intelligence, Elsevier (1981), pp. 119–140 | DOI
[25] I. Rumfitt, “Yes” and “No”, Mind, vol. 109(436) (2000), pp. 781–823 | DOI
[26] T. Sandqvist, Atomic Bases and the Validity of Peirce’s Law, https://drive.google.com/file/d/1fX8PWh8w2cpOkYS39zR2OGfNEhQESKkl/view (Accessed 15 August 2022), presentation at the World Logic Day event at UCL: The Meaning of Proofs.
[27] T. Sandqvist, An Inferentialist Interpretation of Classical Logic, Ph.D. thesis, Uppsala University (2005).
[28] T. Sandqvist, Classical Logic without Bivalence, Analysis, vol. 69(2) (2009), pp. 211–218 | DOI
[29] T. Sandqvist, Base-extension Semantics for Intuitionistic Sentential Logic, Logic Journal of the IGPL, vol. 23(5) (2015), pp. 719–731 | DOI
[30] P. Schroeder-Heister, T. Piecha, Atomic Systems in Proof-Theoretic Semantics: Two Approaches, [in:] Ángel Nepomuceno Fernández, O. P. Martins, J. Redmond (eds.), Epistemology, Knowledge and the Impact of Interaction, Springer Verlag (2016), pp. 47–62 | DOI
[31] T. Smiley, Rejection, Analysis, vol. 56(1) (1996), pp. 1–9 | DOI
[32] M. E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North-Holland Publishing Company (1969) | DOI
[33] A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2000) | DOI
[34] D. van Dalen, Logic and Structure, Universitext, Springer (2012) | DOI
[35] H. Wansing, Falsification, Natural Deduction and Bi-intuitionistic Logic, Journal of Logic and Computation, vol. 26(1) (2016), pp. 425–450 | DOI