Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_2_a2, author = {Ayhan, Sara and Wansing, Heinrich}, title = {On {Synonymy} in {Proof-Theoretic} {Semantics:} {The} {Case} of {\(\mathtt{2Int}\)}}, journal = {Bulletin of the Section of Logic}, pages = {187--237}, publisher = {mathdoc}, volume = {52}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a2/} }
TY - JOUR AU - Ayhan, Sara AU - Wansing, Heinrich TI - On Synonymy in Proof-Theoretic Semantics: The Case of \(\mathtt{2Int}\) JO - Bulletin of the Section of Logic PY - 2023 SP - 187 EP - 237 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a2/ LA - en ID - BSL_2023_52_2_a2 ER -
Ayhan, Sara; Wansing, Heinrich. On Synonymy in Proof-Theoretic Semantics: The Case of \(\mathtt{2Int}\). Bulletin of the Section of Logic, Tome 52 (2023) no. 2, pp. 187-237. http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a2/
[1] A. Almukdad, D. Nelson, Constructible falsity and inexact predicates, The Journal of Symbolic Logic, vol. 49 (1984), pp. 231–233 | DOI
[2] S. Ayhan, Meaning and identity of proofs in a bilateralist setting: A two-sorted typed lambda-calculus for proofs and refutations, manuscript in preparation.
[3] S. Ayhan, Uniqueness of Logical Connectives in a Bilateralist Setting, [in:] M. Blicha, I. Sedlár (eds.), The Logica Yearbook 2020, College Publications, London (2021), pp. 1–16.
[4] S. Drobyshevich, A bilateral Hilbert-style investigation of 2-intuitionistic logic, Journal of Logic and Computation, vol. 29(5) (2019), pp. 665–692 | DOI
[5] S. Drobyshevich, S. Odintsov, H. Wansing, Moisil’s modal logic and related systems, [in:] K. Bimbó (ed.), Essays in Honour of Michael Dunn, College Publications, London (2022), pp. 150–177.
[6] R. Goré, Dual Intuitionistic Logic Revisited, [in:] R. Dyckhoff (ed.), Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2000, Springer-Verlag, Berlin (2000), pp. 252–267 | DOI
[7] N. Kamide, H. Wansing, Proof theory of Nelson’s paraconsistent logic: A uniform perspective, Theoretical Computer Science, vol. 415 (2012), pp. 1–38 | DOI
[8] N. Kamide, H. Wansing, Proof Theory of N4-related paraconsistent logics, College Publications, London (2015).
[9] T. Kowalski, H. Ono, Analytic cut and interpolation for bi-intuitionistic logic, The Review of Symbolic Logic, vol. 10(2) (2017), pp. 259–283 | DOI
[10] S. Negri, J. von Plato, Structural proof theory, Cambridge University Press, Cambridge/New York (2001) | DOI
[11] L. Postniece, Proof Theory and Proof Search of Bi-Intuitionistic and Tense Logic, Ph.D. thesis, The Australian National University, Canberra (2010).
[12] D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (1965).
[13] C. Rauszer, A formalization of the propositional calculus of H-B logic, Studia Logica, vol. 33(1) (1974), pp. 23–34 | DOI
[14] F. von Kutschera, Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle, Archiv für mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 104–118 | DOI
[15] H. Wansing, Falsification, natural deduction and bi-intuitionistic logic, Journal of Logic and Computation, vol. 26(1) (2016), pp. 425–450 | DOI
[16] H. Wansing, On Split Negation, Strong Negation, Information, Falsification, and Verification, [in:] K. Bimbó (ed.), J. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic, vol. 8, Springer (2016), pp. 161–189 | DOI
[17] H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46 | DOI
[18] H. Wansing, A note on synonymy in proof-theoretic semantics, [in:] T. Piecha, K. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Outstanding Contributions to Logic, Springer (forthcoming).
[19] H. Wansing, S. Ayhan, Logical multilateralism (2023), submitted.