Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_2_a1, author = {van Dijk, Emma and Ripley, David and Gutierrez, Julian}, title = {Core {Type} {Theory}}, journal = {Bulletin of the Section of Logic}, pages = {145--186}, publisher = {mathdoc}, volume = {52}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a1/} }
van Dijk, Emma; Ripley, David; Gutierrez, Julian. Core Type Theory. Bulletin of the Section of Logic, Tome 52 (2023) no. 2, pp. 145-186. http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a1/
[1] S. Ayhan, H. Wansing, On synonymy in proof-theoretic semantics: The case of 2Int, Bulletin of the Section of Logic, vol. Online First (2023) | DOI
[2] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, Elsevier, Amsterdam (1984).
[3] A. Church, The Calculi of Lambda-Conversion, Princeton University Press, Princeton, New Jersey (1941).
[4] A. Dı́az-Caro, G. Dowek, A new connective in natural deduction, and its application to quantum computing, [in:] International Colloquium on Theoretical Aspects of Computing, Springer (2021), pp. 175–193 | DOI
[5] G. Gentzen, Investigations Into Logical Deduction (1935), [in:] M. E. Szabo (ed.), The Collected Papers of Gerhard Gentzen, North-Holland Publishing Company, Amsterdam (1969), pp. 68–131.
[6] J. Girard, P. Taylor, Y. Lafont, Proofs and Types, Cambridge University Press, Cambridge (1989).
[7] J. Hindley, J. P. Seldin, Lambda-Calculus and Combinators: an Introduction, Cambridge University Press, Cambridge (2008) | DOI
[8] W. H. Howard, The formulae-as-types notion of construction (1969), [in:] To HB Curry: Essays on combinatory logic, lambda calculus, and formalism, Academic Press (1980), pp. 479–490.
[9] D. Leivant, Assumption classes in natural deduction, Mathematical Logic Quarterly, vol. 25(1–2) (1979), pp. 1–4 | DOI
[10] S. Negri, J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge (2001) | DOI
[11] M. Petrolo, P. Pistone, On paradoxes in normal form, Topoi, vol. 38(3) (2019), pp. 605–617 | DOI
[12] D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist and Wiksell, Stockholm (1965).
[13] D. Ripley, Strong normalization in core type theory, [in:] I. Sedlár, M. Blicha (eds.), The Logica Yearbook 2019, College Publications (2020), pp. 111–130.
[14] M. H. Sørensen, P. Urzyczyn, Lectures on the Curry-Howard isomorphism, Elsevier (2006).
[15] N. Tennant, Anti-Realism and Logic, Oxford University Press, Oxford (1987).
[16] N. Tennant, Natural deduction and sequent calculus for intuitionistic relevant logic, Journal of Symbolic Logic, vol. 52(3) (1987), pp. 665–680 | DOI
[17] N. Tennant, Autologic: Proof theory and automated deduction, Edinburgh University Press, Edinburgh (1992).
[18] N. Tennant, On Paradox without Self-Reference, Analysis, vol. 55(3) (1995), pp. 199–207 | DOI
[19] N. Tennant, What is Negation?, [in:] D. M. Gabbay, H. Wansing (eds.), Negation, Absurdity, and Contrariety, Kluwer Academic Publishers, Dordrecht (1999), pp. 199–222 | DOI
[20] N. Tennant, Ultimate normal forms for parallelized natural deductions, Logic Journal of the IGPL, vol. 10(3) (2002), pp. 299–337 | DOI
[21] N. Tennant, Cut for Core Logic, Review of Symbolic Logic, vol. 5(3) (2012), pp. 450–479 | DOI
[22] N. Tennant, Core Logic, Oxford University Press, Oxford (2017).
[23] H. Wansing, Proofs, disproofs, and their duals, [in:] L. Beklemishev, V. Goranko, V. Shehtman (eds.), Advances in Modal Logic, vol. 8, College Publications (2010), pp. 483–505.
[24] H. Wansing, Falsification, natural deduction and bi-intuitionistic logic, Journal of Logic and Computation, vol. 26(1) (2016), pp. 425–450 | DOI
[25] H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25(1) (2017), pp. 23–46 | DOI