Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_2_a0, author = {Restall, Greg}, title = {Structural {Rules} in {Natural} {Deduction} with {Alternatives}}, journal = {Bulletin of the Section of Logic}, pages = {109--143}, publisher = {mathdoc}, volume = {52}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a0/} }
Restall, Greg. Structural Rules in Natural Deduction with Alternatives. Bulletin of the Section of Logic, Tome 52 (2023) no. 2, pp. 109-143. http://geodesic.mathdoc.fr/item/BSL_2023_52_2_a0/
[1] H. B. Curry, R. Feys, Combinatory Logic, vol. 1, North Holland (1958).
[2] M. J. Gabbay, M. J. Gabbay, Some Formal Considerations on Gabbay's Restart Rule in Natural Deduction and Goal-Directed Reasoning, [in:] S. Artemov, H. Barringer, A. S. d'Avila Garcez, L. C. Lamb, J. Woods (eds.), We Will Show Them: Essays in Honour of Dov Gabbay, vol. 1, College Publications (2005), pp. 701–730.
[3] J.-Y. Girard, Linear Logic, Theoretical Computer Science, vol. 50 (1987), pp. 1–101 | DOI
[4] L. Incurvati, P. Smith, Rejection and valuations, Analysis, vol. 70(1) (2010), pp. 3–10 | DOI
[5] D. Leivant, Assumption Classes in Natural Deduction, Mathematical Logic Quarterly, vol. 25(1–2) (1979), pp. 1–4 | DOI
[6] S. Negri, A normalizing system of natural deduction for intuitionistic linear logic, Archive for Mathematical Logic, vol. 41(8) (2002), pp. 789–810 | DOI
[7] F. Paoli, Substructural Logics: A Primer, Springer (2002) | DOI
[8] M. Parigot, λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction, [in:] A. Voronkov (ed.), International Conference on Logic for Programming Artificial Intelligence and Reasoning, vol. 624 of Lecture Notes in Artificial Intelligence, Springer (1992), pp. 190–201 | DOI
[9] M. Parigot, Classical proofs as programs, [in:] G. Gottlob, A. Leitsch, D. Mundici (eds.), Computational Logic and Proof Theory, vol. 713 of Lecture Notes in Computer Science, Springer (1993), pp. 263–276 | DOI
[10] M. Parigot, Proofs of Strong Normalisation for Second Order Classical Natural Deduction, The Journal of Symbolic Logic, vol. 62(4) (1997), pp. 1461–1479 | DOI
[11] D. Prawitz, Natural Deduction: A Proof Theoretical Study, Almqvist and Wiksell, Stockholm (1965).
[12] G. Restall, An Introduction to Substructural Logics, Routledge (2000).
[13] G. Restall, Multiple Conclusions, [in:] P. Hájek, L. Valdés-Villanueva, D. Westerståhl (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, KCL Publications (2005), pp. 189–205.
[14] G. Restall, Proofnets for s5: Sequents and circuits for modal logic, [in:] C. Dimitracopoulos, L. Newelski, D. Normann (eds.), Logic Colloquium 2005, vol. 28 of Lecture Notes in Logic, Cambridge University Press (2007), pp. 151–172.
[15] E. Robinson, Proof Nets for Classical Logic, Journal of Logic and Computation, vol. 13(5) (2003), pp. 777–797 | DOI
[16] I. Rumfitt, "Yes" and "No", Mind, vol. 109(436) (2000), pp. 781–823 | DOI
[17] M. Schönfinkel, Über die Bausteine der mathematischen Logik, Mathematische Annallen, vol. 92 (1924), pp. 305–316, translated and reprinted as “On the Building Blocks of Mathematical Logic” in From Frege to Gödel [22]. | DOI
[18] D. J. Shoesmith, T. J. Smiley, Multiple-Conclusion Logic, Cambridge University Press, Cambridge (1978) | DOI
[19] T. Smiley, Rejection, Analysis, vol. 56 (1996), pp. 1–9 | DOI
[20] N. Tennant, Natural Logic, Edinburgh University Press, Edinburgh (1978).
[21] A. S. Troelstra, Lectures on Linear Logic, csli Publications (1992).
[22] J. van Heijenoort, From Frege to Gödel: a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Mass. (1967).
[23] E. Zimmermann, Substructural Logics in Natural Deduction, Logic Journal of IGPL, vol. 15(3) (2007), pp. 211–232 | DOI