Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_1_a3, author = {Gyenis, Zal\'an and Moln\'ar, Zal\'an and \"Ozt\"urk, \"Ovge}, title = {The {Modelwise} {Interpolation} {Property} of {Semantic} {Logics}}, journal = {Bulletin of the Section of Logic}, pages = {59--83}, publisher = {mathdoc}, volume = {52}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a3/} }
TY - JOUR AU - Gyenis, Zalán AU - Molnár, Zalán AU - Öztürk, Övge TI - The Modelwise Interpolation Property of Semantic Logics JO - Bulletin of the Section of Logic PY - 2023 SP - 59 EP - 83 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a3/ LA - en ID - BSL_2023_52_1_a3 ER -
Gyenis, Zalán; Molnár, Zalán; Öztürk, Övge. The Modelwise Interpolation Property of Semantic Logics. Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 59-83. http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a3/
[1] H. Andréka, Z. Gyenis, I. Németi, I. Sain, Universal Algebraic Logic, Birkhauser (2022) | DOI
[2] H. Andréka, J. X. Madarász, I. Németi, Logic of Space-Time and Relativity Theory, [in:] M. Aiello, I. Pratt-Hartmann, J. Van Benthem (eds.), Handbook of Spatial Logics, Springer Netherlands, Dordrecht (2007), pp. 607–711 | DOI
[3] H. Andréka, I. Németi, I. Sain, Algebraic logic, [in:] Handbook of Philosophical Logic, vol. 2, Kluwer Academic Publishers, Dordrecht (2001), pp. 133–247.
[4] H. Andréka, I. Németi, J. van Benthem, Interpolation and Definability Properties of Finite Variable Fragments, Reports of the Mathematical Institute, Hungarian Academy of Sciences, (1993).
[5] H. Andréka, I. Németi, J. van Benthem, Modal languages and bounded fragments of predicate logic, Journal of Philosophical Logic, vol. 27(3) (1998), pp. 217–274 | DOI
[6] J. Barwise, On Moschovakis closure ordinals, Journal of Symbolic Logic, vol. 42(2) (1977), p. 292–296 | DOI
[7] P. Blackburn, M. d. Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001) | DOI
[8] W. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78 | DOI
[9] W. J. Blok, D. Pigozzi, Abstract Algebraic Logic, Lecture Notes of the Summer School “Algebraic Logic and the Methodology of Applying it”, Budapest, (1994).
[10] W. J. Blok, D. L. Pigozzi, Local deduction theorems in algebraic logic, [in:] Algebraic logic (Budapest, 1988), vol. 54 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam (1991), pp. 75–109.
[11] W. Conradie, Definability and changing perspectives, Master’s thesis, University of Amsterdam (2002).
[12] J. Czelakowski, Logical matrices and the amalgamation property, Studia Logica, vol. 41(4) (1982), pp. 329–341 (1983) | DOI
[13] J. Czelakowski, D. Pigozzi, Amalgamation and interpolation in abstract algebraic logic, [in:] Models, algebras, and proofs (Bogotá, 1995), vol. 203 of Lecture Notes in Pure and Applied Mathematics, Dekker, New York (1999), pp. 187–265 | DOI
[14] J. Czelakowski, D. Pigozzi, Fregean logics, Annals of Pure and Applied Logic, vol. 127(1-3) (2004), pp. 17–76 | DOI
[15] Z. Gyenis, Interpolation property and homogeneous structures, Logic Journal of the IGPL, vol. 22(4) (2014), pp. 597–607 | DOI
[16] Z. Gyenis, Algebraic characterization of the local Craig interpolation property, Bulletin of the Section of Logic, vol. 47(1) (2018), pp. 45–58 | DOI
[17] E. Hoogland, Algebraic characterizations of two Beth definability properties, Master’s thesis, Universiteit van Amsterdam (1996).
[18] E. Hoogland, Definability and Interpolation, model-theoretic investigations, Ph.D. thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam (2001).
[19] P. Krzystek, S. Zachorowski, Lukasiewicz logics have not the interpolation property, Reports on Mathematical Logic, vol. 9 (1977), pp. 39–40.
[20] J. X. Madarász, Interpolation and amalgamation; pushing the limits. I, Studia Logica, vol. 61(3) (1998), pp. 311–345 | DOI
[21] J. X. Madarász, I. Németi, G. Székely, First-Order Logic Foundation of Relativity Theories, [in:] D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.), Mathematical Problems from Applied Logic II: Logics for the XXIst Century, Springer New York, New York, NY (2007), pp. 217–252 | DOI
[22] L. Maksimova, Amalgamation and interpolation in normal modal logic, Studia Logica, vol. 50(3-4) (1991), pp. 457–471, algebraic logic. | DOI
[23] L. L. Maksimova, Interpolation theorems in modal logics and amalgamable varieties of topological Boolean algebras, Algebra i Logika, vol. 18(5) (1979), pp. 556–586, 632.
[24] P. Mancosu, Introduction: Interpolations—essays in honor of William Craig, Synthese, vol. 164(3) (2008), pp. 313–319 | DOI
[25] G. Metcalfe, F. Montagna, C. Tsinakis, Amalgamation and interpolation in ordered algebras, Journal of Algebra, vol. 402 (2014), pp. 21–82 | DOI
[26] D. Mundici, Consequence and Interpolation in Lukasiewicz Logic, Studia Logica, vol. 99(1/3) (2011), pp. 269–278, URL: http://www.jstor.org/stable/41475204
[27] D. Nyiri, The Robinson property and amalgamations of higher arities, Mathematical Logic Quarterly, vol. 62(4–5) (2016), pp. 427–433 | DOI
[28] D. Pigozzi, Amalgamation, congruence-extension, and interpolation properties in algebras, Algebra Universalis, vol. 1 (1971/72), pp. 269–349 | DOI
[29] D. J. Pigozzi, Fregean algebraic logic, [in:] Algebraic logic (Budapest, 1988), vol. 54 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam (1991), pp. 473–502.
[30] G. Priest, An Introduction to Non-Classical Logic: From If to Is, Cambridge University Press (2008).
[31] D. Roorda, Resource Logics. Proof-Theoretical Investigations, Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (1991).
[32] G. Sági, S. Shelah, On weak and strong interpolation in algebraic logics, The Journal of Symbolic Logic, vol. 71(1) (2006), pp. 104–118 | DOI
[33] I. Sain, Successor axioms for time increase the program verifying power of full computational induction, Mathematical Institute if the Hungarian Academy of Sciences, vol. 23 (1983).
[34] I. Sain, Is “some-other-time” sometimes better than “sometime” for proving partial correctness of programs?, Studia Logica, vol. 47(3) (1988), pp. 279–301 | DOI
[35] I. Sain, Beth’s and Craig’s properties via epimorphisms and amalgamation in algebraic logic, [in:] Algebraic Logic and Universal Algebra in Computer Science (Ames, IA, 1988), vol. 425 of Lecture Notes in Computer Science, Springer, Berlin (1990), pp. 209–225 | DOI
[36] K. Segerberg, “Somewhere else” and “Some other time”, [in:] Wright and Wrong — Mini essays in honor of Georg Henrik von Wright, vol. 3 of Publications, Group in Logic and Methodology of Real Finland (1976), pp. 61–64.
[37] S. J. van Gool, G. Metcalfe, C. Tsinakis, Uniform interpolation and compact congruences, Annals of Pure and Applied Logic, vol. 168(10) (2017), pp. 1927–1948 | DOI
[38] Y. Venema, Many-dimensional Modal Logic, Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (1992).