Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2023_52_1_a2, author = {Mart{\'\i}nez-Rivillas, Daniel O. and de Queiroz, Ruy J. G. B.}, title = {The {Theory} of an {Arbitrary} {Higher} {\ensuremath{\lambda}-Model}}, journal = {Bulletin of the Section of Logic}, pages = {39--58}, publisher = {mathdoc}, volume = {52}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a2/} }
TY - JOUR AU - Martínez-Rivillas, Daniel O. AU - de Queiroz, Ruy J. G. B. TI - The Theory of an Arbitrary Higher λ-Model JO - Bulletin of the Section of Logic PY - 2023 SP - 39 EP - 58 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a2/ LA - en ID - BSL_2023_52_1_a2 ER -
Martínez-Rivillas, Daniel O.; de Queiroz, Ruy J. G. B. The Theory of an Arbitrary Higher λ-Model. Bulletin of the Section of Logic, Tome 52 (2023) no. 1, pp. 39-58. http://geodesic.mathdoc.fr/item/BSL_2023_52_1_a2/
[1] R. de Queiroz, A. de Oliveira, A. Ramos, Propositional equality, identity types, and direct computational paths, South American Journal of Logic, vol. 2(2) (2016), pp. 245–296.
[2] J. Lurie, Higher Topos Theory, Princeton University Press, Princeton and Oxford (2009) | DOI
[3] D. Martínez-Rivillas, R. de Queiroz, Solving Homotopy Domain Equations, arXiv:2104.01195, (2021).
[4] D. Martínez-Rivillas, R. de Queiroz, The ∞-groupoid generated by an arbitrary topological λ-model, Logic Journal of the IGPL (also arXiv:1906.05729), vol. 30 (2022), pp. 465–488, URL: https://doi.org/10.1093/jigpal/jzab015
[5] D. Martínez-Rivillas, R. de Queiroz, Towards a Homotopy Domain Theory, Archive for Mathematical Logic (also arXiv 2007.15082), (2022), URL: https://doi.org/10.1007/s00153-022-00856-0
[6] C. Rezk, Introduction to Quasicategories, Lecture Notes for course at University of Illinois at Urbana-Champaign (2022), URL: https://faculty.math.illinois.edu/~{}rezk/quasicats.pdf