Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2022_51_2_a2, author = {Belikov, Alexander and Zaitsev, Dmitry}, title = {A {Variant} of {Material} {Connexive} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {227--242}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2022_51_2_a2/} }
Belikov, Alexander; Zaitsev, Dmitry. A Variant of Material Connexive Logic. Bulletin of the Section of Logic, Tome 51 (2022) no. 2, pp. 227-242. http://geodesic.mathdoc.fr/item/BSL_2022_51_2_a2/
[1] A. Belikov, Peirce’s Triadic Logic and Its (Overlooked) Connexive Expansion, Logic and Logical Philosophy, vol. 30(3) (2021), pp. 535–559 | DOI
[2] N. D. Belnap, A Useful Four-Valued Logic, [in:] J. M. Dunn, G. Epstein (eds.), Modern Uses of Multiple-Valued Logic, vol. 2 of Episteme (A Series in the Foundational, Methodological, Philosophical, Psychological, Sociological, and Political Aspects of the Sciences, Pure and Applied), Springer Netherlands, Dordrecht (1977), pp. 5–37 | DOI
[3] N. D. Belnap, How a Computer Should Think, [in:] H. Omori, H. Wansing (eds.), New Essays on Belnap-Dunn Logic, Springer International Publishing, Cham (2019), pp. 35–53 | DOI
[4] J. Cantwell, The Logic of Conditional Negation, Notre Dame Journal of Formal Logic, vol. 49(3) (2008), pp. 245–260 | DOI
[5] W. Cooper, The Propositional Logic of Ordinary Discourse, Inquiry, vol. 11(1-4) (1968), pp. 295–320 | DOI
[6] J. M. Dunn, Intuitive semantics for first-degree entailments and ‘coupled trees’, Philosophical Studies, vol. 29(3) (1976), pp. 149–168 | DOI
[7] P. Egré, G. Politzer, On the negation of indicative conditionals, [in:] M. Aloni, M. Franke, F. Roelofsen (eds.), Proceedings of the 19th Amsterdam Colloquium (2013), pp. 10–18, URL: http://events.illc.uva.nl/AC/AC2013/uploaded_files/inlineitem/02_Egre_Politzer.pdf
[8] L. Estrada-González, The Bochum Plan and the foundations of contra-classical logics, CLE e-Prints, vol. 19(1) (2020), pp. 1–22.
[9] L. Estrada-González, E. Ramirez-Cámara, A Comparison of Connexive Logics, IfCoLog Journal of Logics and their Applications, vol. 3 (2016), pp. 341–355.
[10] S. McCall, A History of Connexivity, [in:] D. Gabbay (ed.), Handbook of the History of Logic, vol. 11, Elsevier (2012), pp. 415–449.
[11] E. Mendelson, Introduction to Mathematical Logic (1987) | DOI
[12] G. Olkhovikov, On a New Three-Valued Paraconsistent Logic, [in:] Logic of Law and Tolerance, Ural University Press (2002), pp. 96–113.
[13] H. Omori, From Paraconsistent Logic to Dialetheic Logic, [in:] H. Andreas, P. Verdée (eds.), Logical Studies of Paraconsistent Reasoning in Science and Mathematics, vol. 45 of Trends in Logic (Studia Logica Library), Springer (2016), pp. 111–134.
[14] H. Omori, A Simple Connexive Extension of the Basic Relevant Logic BD, IfCoLog Journal of Logics and their Applications, vol. 3(3) (2016), pp. 467–478.
[15] H. Omori, Towards a bridge over two approaches in connexive logic, Logic and Logical Philosophy, vol. 28(3) (2019), pp. 553–556 | DOI
[16] H. Omori, H. Wansing, An Extension of Connexive Logic C, [in:] N. Olivietti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic, vol. 13, College Publications, Rickmansworth (2020), pp. 503–522.
[17] S. Rahman, On Hypothetical Judgements and Leibniz’s Notion of Conditional Right, [in:] M. Armgardt, P. Canivez, S. Chassagnard-Pinet (eds.), Past and Present Interactions in Legal Reasoning and Logic, Springer International Publishing, Cham (2015), pp. 109–167 | DOI
[18] H. Wansing, Connexive Modal Logic, [in:] R. Schmidt (ed.), Advances in Modal Logic, vol. 5, College Publications (2005), pp. 367–383.
[19] H. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2021 ed., Metaphysics Research Lab, Stanford University (2021), URL: https://plato.stanford.edu/archives/spr2021/entries/logic-connexive/
[20] H. Wansing, D. Skurt, Negation as Cancellation, Connexive Logic, and qLPm, The Australasian Journal of Logic, vol. 15(2) (2018), pp. 476–488 | DOI
[21] Y. Weiss, Semantics For Pure Theories of Connexive Implication, The Review of Symbolic Logic, (2020), pp. 1–16 | DOI