Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2022_51_2_a1, author = {Gordeev, Lew and Haeusler, Edward Hermann}, title = {Proof {Compression} and {NP} {Versus} {PSPACE} {II:} {Addendum}}, journal = {Bulletin of the Section of Logic}, pages = {197--205}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2022_51_2_a1/} }
Gordeev, Lew; Haeusler, Edward Hermann. Proof Compression and NP Versus PSPACE II: Addendum. Bulletin of the Section of Logic, Tome 51 (2022) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/BSL_2022_51_2_a1/
[1] S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press (2009).
[2] L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE, Studia Logica, vol. 107(1) (2019), pp. 55–83 | DOI
[3] L. Gordeev, E. H. Haeusler, Proof Compression and NP Versus PSPACE II, Bulletin of the Section of Logic, vol. 49(3) (2020), pp. 213–230 | DOI
[4] E. H. Haeusler, Propositional Logics Complexity and the Sub-Formula Property, [in:] Proceedings of the Tenth International Workshop on Developments in Computational Models DCM (2014), URL: https://arxiv.org/abs/1401.8209v3
[5] J. Hudelmaier, An O(nlogn)-space decision procedure for intuitionistic propositional logic, Journal of Logic and Computation, vol. 3 (1993), pp. 1–13 | DOI
[6] D. Prawitz, Natural deduction: A proof-theoretical study, Almqvist Wiksell (1965).
[7] R. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science, vol. 9 (1979), pp. 67–72 | DOI