Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2021_50_4_a3, author = {Hao, Yunge and Tourlakis, George}, title = {An {Arithmetically} {Complete} {Predicate} {Modal} {Logic}}, journal = {Bulletin of the Section of Logic}, pages = {513--541}, publisher = {mathdoc}, volume = {50}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a3/} }
Hao, Yunge; Tourlakis, George. An Arithmetically Complete Predicate Modal Logic. Bulletin of the Section of Logic, Tome 50 (2021) no. 4, pp. 513-541. http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a3/
[1] S. Artemov, G. Dzhaparidze, Finite Kripke Models and Predicate Logics of Provability, Journal of Symbolic Logic, vol. 55(3) (1990), pp. 1090–1098 | DOI
[2] A. Avron, On modal systems having arithmetical interpretations, Journal of Symbolic Logic, vol. 49(3) (1984), pp. 935–942 | DOI
[3] G. Boolos, The logic of provability, Cambridge University Press (2003) | DOI
[4] E. W. Dijkstra, C. S. Scholten, Predicate Calculus and Program Semantics, Springer, New York (1990) | DOI
[5] K. Fine, Failures of the interpolation lemma in quantfied modal logic, Journal of Symbolic Logic, vol. 44(2) (1979), pp. 201–206 | DOI
[6] F. Gao, G. Tourlakis, A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics, Bulletin of the Section of Logic, vol. 44(3/4) (2015) | DOI
[7] K. Gödel, Eine Interpretation des intuitionistischen Aussagenkalkuls, Ergebnisse Math, vol. 4 (1933), pp. 39–40.
[8] D. Gries, F. B. Schneider, A Logical Approach to Discrete Math, Springer, New York (1994) | DOI
[9] D. Gries, F. B. Schneider, Adding the Everywhere Operator to Propositional Logic, Journal of Logic and Computation, vol. 8(1) (1998), pp. 119–129 | DOI
[10] D. Hilbert, W. Ackermann, Principles of Mathematical Logic, Chelsea, New York (1950).
[11] D. Hilbert, P. Bernays, Grundlagen der Mathematik I and II, Springer, New York (1968) | DOI
[12] G. Japaridze, D. de Jongh, The Logic of Provability, [in:] Buss, S. R. (ed.), Handbook of Proof Theory, Elsevier Science B.V. (1998), pp. 475–550 | DOI
[13] F. Kibedi, G. Tourlakis, A Modal Extension of Weak Generalisation Predicate Logic, Logic Journal of IGPL, vol. 14(4) (2006), pp. 591–621 | DOI
[14] S. Kleene, Introduction to metamathematics, North-Holland, Amsterdam (1952).
[15] S. A. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic, vol. 24(1) (1959), pp. 1–14 | DOI
[16] E. Mendelson, Introduction to Mathematical Logic, 3rd ed., Wadsworth Brooks, Monterey, CA (1987) | DOI
[17] F. Montagna, The predicate modal logic of provability, Notre Dame Journal of Formal Logic, vol. 25(2) (1984), pp. 179–189 | DOI
[18] Y. Schwartz, G. Tourlakis, On the Proof-Theory of two Formalisations of Modal First-Order Logic, Studia Logica, vol. 96(3) (2010), pp. 349–373 | DOI
[19] Y. Schwartz, G. Tourlakis, On the proof-theory of a first-order extension of GL, Logic and Logical Philosophy, vol. 23(3) (2013), pp. 329–363 | DOI
[20] Y. Schwartz, G. Tourlakis, A proof theoretic tool for first-order modal logic, Bulletin of the Section of Logic, vol. 42(3/4) (2013), pp. 93–110.
[21] J. R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, MA (1967).
[22] C. Smorynski, Self-Reference and Modal Logic, Springer, New York (1985) | DOI
[23] R. M. Solovay, Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 25(3–4) (1976), pp. 287–304 | DOI
[24] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathematical Logic, Cambridge University Press, Cambridge (2003) | DOI
[25] G. Tourlakis, Mathematical Logic, John Wiley Sons, Hoboken, NJ (2008) | DOI
[26] G. Tourlakis, A new arithmetically incomplete first-order extension of GL all theorems of which have cut free proofs, Bulletin of the Section of Logic, vol. 45(1) (2016), pp. 17–31 | DOI
[27] G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part I, Bulletin of the Section of Logic, vol. 32(4) (2003), pp. 165–178.
[28] G. Tourlakis, F. Kibedi, A modal extension of first order classical logic. Part II, Bulletin of the Section of Logic, vol. 33 (2004), pp. 1–10.
[29] V. A. Vardanyan, Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 34 (1986), pp. 384–387, URL: http://mi.mathnet.ru/eng/dan8607
[30] R. E. Yavorsky, On Arithmetical Completeness of First-Order Logics of Provability, Advances in Modal Logic, (2002), pp. 1–16 | DOI