Voir la notice de l'article provenant de la source Library of Science
@article{BSL_2021_50_4_a2, author = {Sayed Ahmed, Tarek}, title = {On {Complete} {Representations} and {Minimal} {Completions} in {Algebraic} {Logic,} {Both} {Positive} and {Negative} {Results}}, journal = {Bulletin of the Section of Logic}, pages = {465--511}, publisher = {mathdoc}, volume = {50}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/} }
TY - JOUR AU - Sayed Ahmed, Tarek TI - On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results JO - Bulletin of the Section of Logic PY - 2021 SP - 465 EP - 511 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/ LA - en ID - BSL_2021_50_4_a2 ER -
%0 Journal Article %A Sayed Ahmed, Tarek %T On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results %J Bulletin of the Section of Logic %D 2021 %P 465-511 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/ %G en %F BSL_2021_50_4_a2
Sayed Ahmed, Tarek. On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results. Bulletin of the Section of Logic, Tome 50 (2021) no. 4, pp. 465-511. http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/
[1] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013) | DOI
[2] H. Andréka, I. Németi, T. S. Ahmed, Omitting types for finite variable fragments and complete representations of algebras, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89 | DOI
[3] A. Daigneault, J. Monk, Representation Theory for Polyadic algebras, Fundamenta Informaticae, vol. 52 (1963), pp. 151–176 | DOI
[4] M. Ferenczi, The Polyadic Generalization of the Boolean Axiomatization of Fields of Sets, Transactions of the American Mathematical Society, vol. 364(2) (2012), pp. 867–886 | DOI
[5] M. Ferenczi, A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 135–162 | DOI
[6] M. Ferenczi, Representations of polyadic-like equality algebras, Algebra Universalis, vol. 75(1) (2016), pp. 107–125 | DOI
[7] L. Henkin, J. Monk, A. Tarski, Cylindric Algebras Parts I, II, North Holland, Amsterdam (1971).
[8] R. Hirsch, Relation algebra reducts of cylindric algebras and complete representations, Journal of Symbolic Logic, vol. 72(2) (2007), pp. 673–703 | DOI
[9] R. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847 | DOI
[10] R. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (2002).
[11] R. Hirsch, I. Hodkinson, Completions and Complete Representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 61–89 | DOI
[12] R. Hirsch, I. Hodkinson, R. D. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213 | DOI
[13] R. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, The Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222 | DOI
[14] I. Hodkinson, Atom structures of cylindric algebras and relation algebras, Annals of Pure and Applied Logic, vol. 89(2) (1997), pp. 117–148 | DOI
[15] J. S. Johnson, Nonfinitizability of classes of representable polyadic algebras, Journal of Symbolic Logic, vol. 34(3) (1969), pp. 344–352 | DOI
[16] R. D. Maddux, Nonfinite axiomatizability results for cylindric and relation algebras, Journal of Symbolic Logic, vol. 54(3) (1989), pp. 951–974 | DOI
[17] T. Sayed Ahmed, The class of neat reducts is not elementary, Logic Journal of the IGPL, vol. 9(4) (2001), pp. 593–628 | DOI
[18] T. Sayed Ahmed, The class of 2-dimensional neat reducts is not elementary, Fundamenta Mathematicae, vol. 172 (2002), pp. 61–81 | DOI
[19] T. Sayed Ahmed, A Modeltheoretic Solution to a Problem of Tarski, Mathematical Logic Quarterly, vol. 48(3) (2002), pp. 343–355343::AID-MALQ343>3.0.CO;2-4'>10.1002/1521-3870(200204)48:3343::AID-MALQ343>3.0.CO;2-4 | DOI
[20] T. Sayed Ahmed, Algebraic Logic, Where Does it Stand Today?, Bulletin of Symbolic Logic, vol. 11(4) (2005), pp. 465–516 | DOI
[21] T. Sayed Ahmed, A Note on Neat Reducts, Studia Logica: An International Journal for Symbolic Logic, vol. 85(2) (2007), pp. 139–151 | DOI
[22] T. Sayed Ahmed, (RaCA_n) is not elementary for (ngeq 5), Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 123–136.
[23] T. Sayed Ahmed, Atom-canonicity, relativized representations and omitting types for clique guarded semantics and guarded logics (2013), arXiv:1308.6165.
[24] T. Sayed Ahmed, Completions, Complete Representations and Omitting Types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 205–221 | DOI
[25] T. Sayed Ahmed, Neat Reducts and Neat Embeddings in Cylindric Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 105–131 | DOI
[26] T. Sayed Ahmed, The class of completely representable polyadic algebras of infinite dimensions is elementary, Algebra Universalis, vol. 72(4) (2014), pp. 371–380 | DOI
[27] T. Sayed Ahmed, On notions of representability for cylindric‐polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477 | DOI
[28] T. Sayed Ahmed, Splitting methods in algebraic logic: Proving results on non-atom-canonicity, non-finite axiomatizability and non-first oder definability for cylindric and relation algebras (2015), arXiv:1503.02189.
[29] T. Sayed Ahmed, Atom-canonicity in algebraic logic in connection to omitting types in modal fragments of (L_{omega, omega}) (2016), arXiV:1608.03513.