@article{BSL_2021_50_4_a2,
author = {Sayed Ahmed, Tarek},
title = {On {Complete} {Representations} and {Minimal} {Completions} in {Algebraic} {Logic,} {Both} {Positive} and {Negative} {Results}},
journal = {Bulletin of the Section of Logic},
pages = {465--511},
year = {2021},
volume = {50},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/}
}
TY - JOUR AU - Sayed Ahmed, Tarek TI - On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results JO - Bulletin of the Section of Logic PY - 2021 SP - 465 EP - 511 VL - 50 IS - 4 UR - http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/ LA - en ID - BSL_2021_50_4_a2 ER -
Sayed Ahmed, Tarek. On Complete Representations and Minimal Completions in Algebraic Logic, Both Positive and Negative Results. Bulletin of the Section of Logic, Tome 50 (2021) no. 4, pp. 465-511. http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a2/
[1] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013) | DOI
[2] H. Andréka, I. Németi, T. S. Ahmed, Omitting types for finite variable fragments and complete representations of algebras, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89 | DOI
[3] A. Daigneault, J. Monk, Representation Theory for Polyadic algebras, Fundamenta Informaticae, vol. 52 (1963), pp. 151–176 | DOI
[4] M. Ferenczi, The Polyadic Generalization of the Boolean Axiomatization of Fields of Sets, Transactions of the American Mathematical Society, vol. 364(2) (2012), pp. 867–886 | DOI
[5] M. Ferenczi, A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 135–162 | DOI
[6] M. Ferenczi, Representations of polyadic-like equality algebras, Algebra Universalis, vol. 75(1) (2016), pp. 107–125 | DOI
[7] L. Henkin, J. Monk, A. Tarski, Cylindric Algebras Parts I, II, North Holland, Amsterdam (1971).
[8] R. Hirsch, Relation algebra reducts of cylindric algebras and complete representations, Journal of Symbolic Logic, vol. 72(2) (2007), pp. 673–703 | DOI
[9] R. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847 | DOI
[10] R. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (2002).
[11] R. Hirsch, I. Hodkinson, Completions and Complete Representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 61–89 | DOI
[12] R. Hirsch, I. Hodkinson, R. D. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213 | DOI
[13] R. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, The Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222 | DOI
[14] I. Hodkinson, Atom structures of cylindric algebras and relation algebras, Annals of Pure and Applied Logic, vol. 89(2) (1997), pp. 117–148 | DOI
[15] J. S. Johnson, Nonfinitizability of classes of representable polyadic algebras, Journal of Symbolic Logic, vol. 34(3) (1969), pp. 344–352 | DOI
[16] R. D. Maddux, Nonfinite axiomatizability results for cylindric and relation algebras, Journal of Symbolic Logic, vol. 54(3) (1989), pp. 951–974 | DOI
[17] T. Sayed Ahmed, The class of neat reducts is not elementary, Logic Journal of the IGPL, vol. 9(4) (2001), pp. 593–628 | DOI
[18] T. Sayed Ahmed, The class of 2-dimensional neat reducts is not elementary, Fundamenta Mathematicae, vol. 172 (2002), pp. 61–81 | DOI
[19] T. Sayed Ahmed, A Modeltheoretic Solution to a Problem of Tarski, Mathematical Logic Quarterly, vol. 48(3) (2002), pp. 343–355343::AID-MALQ343>3.0.CO;2-4'>10.1002/1521-3870(200204)48:3343::AID-MALQ3433.0.CO;2-4 | DOI
[20] T. Sayed Ahmed, Algebraic Logic, Where Does it Stand Today?, Bulletin of Symbolic Logic, vol. 11(4) (2005), pp. 465–516 | DOI
[21] T. Sayed Ahmed, A Note on Neat Reducts, Studia Logica: An International Journal for Symbolic Logic, vol. 85(2) (2007), pp. 139–151 | DOI
[22] T. Sayed Ahmed, (RaCA_n) is not elementary for (ngeq 5), Bulletin of the Section of Logic, vol. 37(2) (2008), pp. 123–136.
[23] T. Sayed Ahmed, Atom-canonicity, relativized representations and omitting types for clique guarded semantics and guarded logics (2013), arXiv:1308.6165.
[24] T. Sayed Ahmed, Completions, Complete Representations and Omitting Types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 205–221 | DOI
[25] T. Sayed Ahmed, Neat Reducts and Neat Embeddings in Cylindric Algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, Springer Berlin Heidelberg, Berlin, Heidelberg (2013), pp. 105–131 | DOI
[26] T. Sayed Ahmed, The class of completely representable polyadic algebras of infinite dimensions is elementary, Algebra Universalis, vol. 72(4) (2014), pp. 371–380 | DOI
[27] T. Sayed Ahmed, On notions of representability for cylindric‐polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality, Mathematical Logic Quarterly, vol. 61(6) (2015), pp. 418–477 | DOI
[28] T. Sayed Ahmed, Splitting methods in algebraic logic: Proving results on non-atom-canonicity, non-finite axiomatizability and non-first oder definability for cylindric and relation algebras (2015), arXiv:1503.02189.
[29] T. Sayed Ahmed, Atom-canonicity in algebraic logic in connection to omitting types in modal fragments of (L_{omega, omega}) (2016), arXiV:1608.03513.