A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
Bulletin of the Section of Logic, Tome 50 (2021) no. 4, pp. 455-463.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we shall show that the following translation I^M from the propositional fragment L_1 of Leśniewski's ontology to modal logic KTB is sound: for any formula ϕ and ψ of L_1, it is defined as (M1) I^M(ϕ∨ψ) = I^M(ϕ) ∨ I^M(ψ), (M2) I^M(ϕ) = I^M(ϕ), (M3) I^M(ϵ ab) = p_a ⊃ p_a . ∧ . p_a ⊃ p_b .∧ . p_b ⊃ p_a, where p_a and p_b are propositional variables corresponding to the name variables a and b, respectively. In the last, we shall give some comments including some open problems and my conjectures.
Keywords: Le´sniewski’s ontology, propositional ontology, translation, interpretation, modal logic, KTB, soundness, Grzegorczyk’s modal logic
@article{BSL_2021_50_4_a1,
     author = {Inoue, Takao},
     title = {A {Sound} {Interpretation} of {Le\'sniewski's} {Epsilon} in {Modal} {Logic} {KTB}},
     journal = {Bulletin of the Section of Logic},
     pages = {455--463},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a1/}
}
TY  - JOUR
AU  - Inoue, Takao
TI  - A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
JO  - Bulletin of the Section of Logic
PY  - 2021
SP  - 455
EP  - 463
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a1/
LA  - en
ID  - BSL_2021_50_4_a1
ER  - 
%0 Journal Article
%A Inoue, Takao
%T A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB
%J Bulletin of the Section of Logic
%D 2021
%P 455-463
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a1/
%G en
%F BSL_2021_50_4_a1
Inoue, Takao. A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB. Bulletin of the Section of Logic, Tome 50 (2021) no. 4, pp. 455-463. http://geodesic.mathdoc.fr/item/BSL_2021_50_4_a1/

[1] [1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714 | DOI

[2] [2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223.

[3] [3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993) | DOI

[4] [4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82 | DOI

[5] [5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).

[6] [6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983) | DOI

[7] [7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817 | DOI

[8] [8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984).

[9] [9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96.

[10] [10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233.

[11] [11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021) | DOI

[12] [12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299 | DOI

[13] [13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195 | DOI

[14] [14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019) | DOI

[15] [15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011) | DOI

[16] [16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50 | DOI

[17] [17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71 | DOI

[18] [18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77 | DOI

[19] [19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014) | DOI