Four-valued expansions of Dunn-Belnap's logic (I): Basic characterizations
Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 401-437.

Voir la notice de l'article provenant de la source Library of Science

Basic results of the paper are that any four-valued expansion L4 of Dunn-Belnap's logic DB4 is de_ned by a unique (up to isomorphism) conjunctive matrix ℳ4 with exactly two distinguished values over an expansion 4 of a De Morgan non-Boolean four-valued diamond, but by no matrix with either less than four values or a single [non-]distinguished value, and has no proper extension satisfying Variable Sharing Property (VSP). We then characterize L4's having a theorem / inconsistent formula, satisfying VSP and being [inferentially] maximal / subclassical / maximally paraconsistent, in particular, algebraically through ℳ4|4's (not) having certain submatrices|subalebras. Likewise, [providing 4 is regular / has no three-element subalgebra] L4 has a proper consistent axiomatic extension if[f] ℳ4 has a proper paraconsistent / two-valued submatrix [in which case the logic of this submatrix is the only proper consistent axiomatic extension of L4 and is relatively axiomatized by the Excluded Middle law axiom]. As a generic tool (applicable, in particular, to both classically-negative and implicative expansions of DB4), we also prove that the lattice of axiomatic extensions of the logic of an implicative matrix ℳ with equality determinant is dual to the distributive lattice of lower cones of the set of all submatrices of ℳ with non-distinguished values.
Keywords: propositional logic, logical matrix, Dunn-Belnap's logic, expansion, [bounded] distributive/De Morgan lattice, equality determinant
@article{BSL_2020_49_4_a4,
     author = {Pynko, Alexej P.},
     title = {Four-valued expansions of {Dunn-Belnap's} logic {(I):} {Basic} characterizations},
     journal = {Bulletin of the Section of Logic},
     pages = {401--437},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a4/}
}
TY  - JOUR
AU  - Pynko, Alexej P.
TI  - Four-valued expansions of Dunn-Belnap's logic (I): Basic characterizations
JO  - Bulletin of the Section of Logic
PY  - 2020
SP  - 401
EP  - 437
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a4/
LA  - en
ID  - BSL_2020_49_4_a4
ER  - 
%0 Journal Article
%A Pynko, Alexej P.
%T Four-valued expansions of Dunn-Belnap's logic (I): Basic characterizations
%J Bulletin of the Section of Logic
%D 2020
%P 401-437
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a4/
%G en
%F BSL_2020_49_4_a4
Pynko, Alexej P. Four-valued expansions of Dunn-Belnap's logic (I): Basic characterizations. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 401-437. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a4/

[1] A. R. Anderson, N. D. Belnap, Entailment, vol. 1, Princeton University Press, Princeton (1975).

[2] R. Balbes, P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia (Missouri) (1974).

[3] N. D. Belnap, A useful four-valued logic, [in:] J. M. Dunn, G. Epstein (eds.), Modern uses of multiple-valued logic, D. Reidel Publishing Company, Dordrecht (1977), pp. 8–37, DOI: http://dx.doi.org/10.1007/978-94-010-1161-7_2

[4] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, Journal of Symbolic Logic, vol. 35 (1970), pp. 1–13, URL: https://projecteuclid.org/euclid.jsl/1183737028

[5] J. M. Dunn, Intuitive semantics for first-order-degree entailment and `coupled tree', Philosophical Studies, vol. 29 (1976), pp. 149–168, DOI: http://dx.doi.org/10.1007/978-3-030-31136-0_3

[6] J. Łoś, R. Suszko, Remarks on sentential logics, Indagationes Mathematicae, vol. 20 (1958), pp. 177–183, DOI: http://dx.doi.org/10.1016/S1385-7258(58)50024-9

[7] A. I. Mal'cev, Algebraic systems, Springer Verlag, New York (1965), DOI: http://dx.doi.org/10.1007/978-3-642-65374-2

[8] G. Priest, The logic of paradox, Journal of Philosophical Logic, vol. 8 (1979), pp. 219–241, DOI: http://dx.doi.org/10.1007/BF00258428

[9] A. P. Pynko, Characterizing Belnap's logic via De Morgan's laws, Mathematical Logic Quarterly, vol. 41(4) (1995), pp. 442–454, DOI: http://dx.doi.org/10.1002/malq.19950410403

[10] A. P. Pynko, On Priest's logic of paradox, Journal of Applied Non-Classical Logics, vol. 5(2) (1995), pp. 219–225, DOI: http://dx.doi.org/10.1080/11663081.1995.10510856

[11] A. P. Pynko, Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied Non-Classical Logics, vol. 9(1/2) (1999), pp. 61–105, DOI: http://dx.doi.org/10.1080/11663081.1999.10510958 special Issue on Multi-Valued Logics.

[12] A. P. Pynko, Subprevarieties versus extensions. Application to the logic of paradox, Journal of Symbolic Logic, vol. 65(2) (2000), pp. 756–766, URL: https://projecteuclid.org/euclid.jsl/1183746075

[13] A. P. Pynko, A relative interpolation theorem for infinitary universal Horn logic and its applications, Archive for Mathematical Logic, vol. 45 (2006), pp. 267–305, DOI: http://dx.doi.org/10.1007/s00153-005-0302-2

[14] A. P. Pynko, Subquasivarieties of implicative locally-nite quasivarieties, Mathematical Logic Quarterly, vol. 56(6) (2010), pp. 643–658, DOI: http://dx.doi.org/10.1002/malq.200810161