Empirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigations
Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 359-375.

Voir la notice de l'article provenant de la source Library of Science

We continue the investigation of the first paper where we studied logics with various negations including empirical negation and co-negation. We established how such logics can be treated uniformly with R. Sylvan's CCω as the basis. In this paper we use this result to obtain cut-free labelled sequent calculi for the logics.
Keywords: empirical negation, co-negation, labelled sequent calculus, intuitionism
@article{BSL_2020_49_4_a2,
     author = {Niki, Satoru},
     title = {Empirical {Negation,} {Co-Negation} and the {Contraposition} {Rule} {II:} {Proof-Theoretical} {Investigations}},
     journal = {Bulletin of the Section of Logic},
     pages = {359--375},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a2/}
}
TY  - JOUR
AU  - Niki, Satoru
TI  - Empirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigations
JO  - Bulletin of the Section of Logic
PY  - 2020
SP  - 359
EP  - 375
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a2/
LA  - en
ID  - BSL_2020_49_4_a2
ER  - 
%0 Journal Article
%A Niki, Satoru
%T Empirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigations
%J Bulletin of the Section of Logic
%D 2020
%P 359-375
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a2/
%G en
%F BSL_2020_49_4_a2
Niki, Satoru. Empirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigations. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 359-375. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a2/

[1] M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9

[2] M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133.

[3] H. Friedman, Intuitionistic Completeness of Heyting's Predicate Calculus, Notices of the American Mathematical Society, vol. 22(6) (1975), pp. A648–A648.

[4] A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8

[5] V. N. Krivtsov, An intuitionistic completeness theorem for classical predicate logic, Studia Logica, vol. 96(1) (2010), pp. 109–115, DOI: http://dx.doi.org/10.1007/s11225-010-9273-3

[6] S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34(5–6) (2005), pp. 507–544, DOI: http://dx.doi.org/10.1007/s10992-005-2267-3

[7] S. Negri, Proof analysis in non-classical logics, [in:] C. Dimitracopoulos, L. Newelski, D. Normann, J. Steel (eds.), ASL Lecture Notes in Logic, vol. 28, Cambridge University Press (2007), pp. 107–128, DOI: http://dx.doi.org/10.1017/CBO9780511546464.010

[8] S. Negri, J. von Plato, Proof analysis: a contribution to Hilbert's last problem, Cambridge University Press (2011), DOI: http://dx.doi.org/10.1017/CBO9781139003513

[9] G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165

[10] R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of C! and CC!, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553

[11] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988).

[12] W. Veldman, An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic, The Journal of Symbolic Logic, vol. 41(1) (1976), pp. 159–166, DOI: http://dx.doi.org/10.2307/2272955