From Intuitionism to Brouwer's Modal Logic
Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 343-358.

Voir la notice de l'article provenant de la source Library of Science

We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.
Keywords: intuitionistic logic, Kripke frames, Brouwer's modal logic
@article{BSL_2020_49_4_a1,
     author = {Kostrzycka, Zofia},
     title = {From {Intuitionism} to {Brouwer's} {Modal} {Logic}},
     journal = {Bulletin of the Section of Logic},
     pages = {343--358},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a1/}
}
TY  - JOUR
AU  - Kostrzycka, Zofia
TI  - From Intuitionism to Brouwer's Modal Logic
JO  - Bulletin of the Section of Logic
PY  - 2020
SP  - 343
EP  - 358
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a1/
LA  - en
ID  - BSL_2020_49_4_a1
ER  - 
%0 Journal Article
%A Kostrzycka, Zofia
%T From Intuitionism to Brouwer's Modal Logic
%J Bulletin of the Section of Logic
%D 2020
%P 343-358
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a1/
%G en
%F BSL_2020_49_4_a1
Kostrzycka, Zofia. From Intuitionism to Brouwer's Modal Logic. Bulletin of the Section of Logic, Tome 49 (2020) no. 4, pp. 343-358. http://geodesic.mathdoc.fr/item/BSL_2020_49_4_a1/

[1] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und phänomenologische Forschung, vol. 11 (1930), pp. 497–548.

[2] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: http://dx.doi.org/10.1017/CBO9781107050884

[3] A. Chagrov, M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford (1997).

[4] G. Hughes, M. Cresswell, An Introduction to Modal Logic, Methuen and Co. Ltd., London (1968).

[5] C. I. Lewis, C. H. Langford, Symbolic Logic, Appleton-Century-Crofts, New York (1932).

[6] K. Matsumoto, Reduction theorem in Lewis's sentential calculi, Mathematica Japonicae, vol. 3 (1955), pp. 133–135.

[7] J. C. C. McKinsey, A. Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, vol. 13(1) (1948), pp. 1–15, DOI: http://dx.doi.org/10.2307/2268135

[8] V. V. Rybakov, A modal analog for Glivenko's theorem and its applications, Notre Dame Journal of Formal Logic, vol. 3(2) (1992), pp. 244–248, DOI: http://dx.doi.org/10.1305/ndj/1093636103

[9] I. B. Shapirovsky, Glivenko's theorem, finite height, and local tabularity (2018), arXiv:1806.06899.

[10] A. Wroński, J. Zygmunt, Remarks on the free pseudo-boolean algebra with one-element free-generating set, Reports on Mathematical Logic, vol. 2 (1974), pp. 77–81.